Examlex

Solved

Consider the Following Discrete Probability Distributions of Payoffs for 3

question 70

Multiple Choice

Consider the following discrete probability distributions of payoffs for 3 securities that are held in a DI's trading portfolio (payoff amounts shown are in $millions) :  SECURITY  PROBABILITY  PAYOFF  Alpha 0.503550.491500.01300\begin{array} { | l | l | l | } \hline \text { SECURITY } & \text { PROBABILITY } & \text { PAYOFF } \\\hline \text { Alpha } & 0.50 & 355 \\\hline & 0.49 & 150 \\\hline & 0.01 & - 300 \\\hline\end{array}  SECURITY  PROBABILITY  PAYOFF  Beta 0.504000.491500.00253000.00753,300\begin{array} { | l | l | l | } \hline \text { SECURITY } & \text { PROBABILITY } & \text { PAYOFF } \\\hline \text { Beta } & 0.50 & 400 \\\hline & 0.49 & 150 \\\hline & 0.0025 & - 300 \\\hline & 0.0075 & - 3,300 \\\hline\end{array}  SECURITY  PROBABILITY  PAYOFF  Gamma 0.494000.491500.011500.012.000\begin{array} { | l | l | l | } \hline \text { SECURITY } & \text { PROBABILITY } & \text { PAYOFF } \\\hline \text { Gamma } & 0.49 & 400 \\\hline & 0.49 & 150 \\\hline & 0.01 & - 150 \\\hline & 0.01 & - 2.000 \\\hline\end{array} What is the expected payoff, the 99% value at risk (VAR) and the expected shortfall (ES) of security Gamma (in millions) ?


Definitions:

Confidence Level

The probability, expressed as a percentage, that a confidence interval will contain the true population parameter across repeated samples or experiments.

Confidence Interval

A gamut of values, resulting from sample analysis, expected to enfold the value of an undefined population characteristic.

Level of Confidence

The degree to which one can be sure that a particular parameter falls within a specific range, expressed as a percentage.

Related Questions