Examlex

Solved

Carlos Cavazos, Director of Human Resources, Is Exploring Employee Absenteeism

question 24

Multiple Choice

Carlos Cavazos, Director of Human Resources, is exploring employee absenteeism at the Plano Piano Plant.A multiple regression analysis was performed using the following variables.The results are presented below.  Variable  Description Y number of days absent last fiscal year x1 comrnuting distarnce (in miles)  x2 employee’s age (in years)  x3 single-parent household (0= no, 1= yes ) x4 length of employment at PpP (in years)  x5 shift (0= day 1= night)  \begin{array} { | l | l | } \hline \text { Variable } & \text { Description } \\\hline Y & \text { number of days absent last fiscal year } \\\hline x _ { 1 } & \text { comrnuting distarnce (in miles) } \\\hline x _ { 2 } & \text { employee's age (in years) } \\\hline x _ { 3 } & \text { single-parent household } ( 0 = \text { no, } 1 = \text { yes } ) \\\hline x _ { 4 } & \text { length of employment at PpP (in years) } \\\hline x _ { 5 } & \text { shift } ( 0 = \text { day } 1 = \text { night) } \\\hline\end{array}  Coefficients  Standard Error t Statistic p-value  Intercept 6.5941463.2730052.0147070.047671x10.180190.1419491.269390.208391x20.2681560.2606431.0288280.307005x32.310680.9620562.401820.018896x40.505790.2708721.867250.065937x52.3295130.9403212.477360.015584\begin{array} { | c | c | c | c | c | } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Statistic } & p \text {-value } \\\hline \text { Intercept } & 6.594146 & \mathbf { 3 . 2 7 3 0 0 5 } & \mathbf { 2 . 0 1 4 7 0 7 } & \mathbf { 0 . 0 4 7 6 7 1 } \\\hline \boldsymbol { x } _ { 1 } & - 0.18019 & 0.141949 & - 1.26939 & 0.208391 \\\hline \mathbf { x } _ { 2 } & 0.268156 & 0.260643 & 1.028828 & 0.307005 \\\hline \boldsymbol { x } _ { 3 } & - 2.31068 & 0.962056 & - 2.40182 & 0.018896 \\\hline \mathbf { x } _ { 4 } & - 0.50579 & 0.270872 & - 1.86725 & 0.065937 \\\hline \boldsymbol { x } _ { 5 } & \mathbf { 2 . 3 2 9 5 1 3 } & 0.940321 & 2.47736 & 0.015584 \\\hline\end{array} df SS  ME Fp-value  Repression 5279.35855.87164.4237550.001532 Residual 67846.203612.6299 Total 721125.562\begin{array} { | c | c | c | c | c | c | } \hline & \mathrm { df } & \text { SS } & \text { ME } & F & p \text {-value } \\\hline \text { Repression } & 5 & 279.358 & 55.8716 & 4.423755 & \mathbf { 0 . 0 0 1 5 3 2 } \\\hline \text { Residual } & 67 & 846.2036 & 12.6299 & & \\\hline \text { Total } & 72 & 1125.562 & & & \\\hline\end{array} R=0.498191R2=0.248194 Adj R2=0.192089se=3.553858n=73\begin{array} { | c | c | c | } \hline R = 0.498191 & R ^ { 2 } = 0.248194 & \text { Adj } R ^ { 2 } = 0.192089 \\\hline \mathrm { s } _ { \mathrm { e } } = 3.553858 & n = 73 & \\\hline\end{array} Which of the following conclusions can be drawn from the above results?


Definitions:

Goods in Process Inventory

An account in the inventory accounting that represents the cost of unfinished goods in the production process at a particular time.

Factory Overhead

The indirect costs associated with manufacturing, not directly tied to specific units produced, such as maintenance, utilities, and management salaries.

Related Questions