Examlex

Solved

TABLE 15- 8
the Superintendent of a School District Wanted

question 32

Multiple Choice

TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing) , daily average of the percentage of students attending class (% Attendance) , average teacher salary in dollars (Salaries) , and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:

AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing) , daily average of the percentage of students attending class (% Attendance) , average teacher salary in dollars (Salaries) , and instructional spending per pupil in dollars (Spending)  of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>)  of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:   \begin{array}{llcclcc}  & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I) :}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\  \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\  \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II) :}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\  \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III) :}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\  \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\  \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}      -Referring to Table 15-8, which of the following models should be taken into consideration using the Mallows' Cp statistic? A)  X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub><sub> </sub> B)  X<sub>1</sub>, X<sub>3</sub> C)  both of the above D)  none of the above

Following is the output of several multiple regression models:

Model (I) :\text {Model (I) :}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II) :\text {Model (II) :}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III) :\text {Model (III) :}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}




-Referring to Table 15-8, which of the following models should be taken into consideration using the Mallows' Cp statistic?


Definitions:

Rape Trauma Syndrome

A form of post-traumatic stress disorder specifically associated with the traumatic experience of rape, characterized by acute phases and long-term reorganization of lifestyle.

Depression

A mental health disorder characterized by persistently depressed mood or loss of interest in activities, causing significant impairment in daily life.

Rage

An intense, uncontrolled anger that often manifests in aggressive or violent behavior.

Continuing Anxiety

Persistent feelings of worry, nervousness, or unease about something with an uncertain outcome.

Related Questions