Examlex

Solved

TABLE 15- 8
the Superintendent of a School District Wanted

question 65

Short Answer

TABLE 15- 8
The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state.
Let Y = % Passing as the dependent variable, X1 = % Attendance, X2 = Salaries and X3 = Spending.
The coefficient of multiple determination (R 2 j) of each of the 3 predictors with all the other remaining predictors are,

respectively, 0.0338, 0.4669, and 0.4743.
The output from the best- subset regressions is given below:
AdjustedModel  VariablesCpkR SquareR SquareStd. Error 1X13.0520.60240.593610.57872X1X23.6630.61450.597010.53503X1X2X34.0040.62880.602910.45704X1X32.0030.62880.611910.33755X267.3520.04740.026216.37556X2X364.3030.09100.049716.17687X362.3320.09070.070515.9984\begin{array}{llcclcc} & & & && \text {Adjusted} \\\text {Model }&\text { Variables} & \mathrm{Cp} & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\\hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\\hline\end{array}

Following is the residual plot for % Attendance:

 TABLE 15- 8 The superintendent of a school district wanted to predict the percentage of students passing a sixth- grade proficiency test. She obtained the data on percentage of students passing the proficiency test (% Passing), daily average of the percentage of students attending class (% Attendance), average teacher salary in dollars (Salaries), and instructional spending per pupil in dollars (Spending) of 47 schools in the state. Let Y = % Passing as the dependent variable, X<sub>1 </sub>= % Attendance, X<sub>2 </sub>= Salaries and X<sub>3 </sub>= Spending. The coefficient of multiple determination (R <sup>2 </sup><sub>j</sub>) of each of the 3 predictors with all the other remaining predictors are,  respectively, 0.0338, 0.4669, and 0.4743. The output from the best- subset regressions is given below:  \begin{array}{llcclcc}  & & & &&  \text {Adjusted} \\ \text {Model }&\text { Variables} &  \mathrm{Cp}  & \mathrm{k} &\text {R Square} & \text {R Square} & \text {Std. Error }\\ \hline 1 & X1 & 3.05 & 2 & 0.6024 & 0.5936 & 10.5787 \\ 2 & X1X2 & 3.66 & 3 & 0.6145 & 0.5970 & 10.5350 \\ 3 & X1X2X3 & 4.00 & 4 & 0.6288 & 0.6029 & 10.4570 \\ 4 & X1X3 & 2.00 & 3 & 0.6288 & 0.6119 & 10.3375 \\ 5 & X2 & 67.35 & 2 & 0.0474 & 0.0262 & 16.3755 \\ 6 & X2X3 & 64.30 & 3 & 0.0910 & 0.0497 & 16.1768 \\ 7 & X3 & 62.33 & 2 & 0.0907 & 0.0705 & 15.9984 \\ \hline \end{array}   Following is the residual plot for % Attendance:     Following is the output of several multiple regression models:   \text {Model (I):}   \begin{array}{lcrclcr} \hline &  \text {Coefficients }&  \text {Std Error} &  \text {Stat } &  \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\ \hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09  & -957.3401 & -549.5050 \\ \%  \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\  \text {Salary }& 6.85 \mathrm{E}-07  & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\  \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\ \hline \end{array}     \text {Model (II):}   \begin{array}{lcccc} \hline &  \text {Coefficients} & \text {Standard Error }& \text { t  Stat} &  \text { p -value } \\ \hline  \text {Intercept }& -753.4086 & 99.1451 & -7.5991 &  1.5291 \mathrm{E}-09 \\ \%  \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10  \\  \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\ \hline \end{array}     \text {Model (III):}   \begin{array}{lrrrrl} \hline & \text {  d f } & \text { SS } &  \text {  MS } & \text { F } &  \text { Significance F } \\ \hline  \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\  \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\  \text { Total} & 46 & 12667.1064 & & & \\ \hline \end{array}     \begin{array}{lrcrr} \hline &  \text {Coefficients }&  \text {Standard Error} & \text { t Stat }&  \text {p -value} \\ \hline  \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\ \% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\ \%  \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\ \hline \end{array}   -Referring to Table 15-8, what are, respectively, the values of the variance inflationary factor of the 3 predictors?

Following is the output of several multiple regression models:

Model (I):\text {Model (I):}
Coefficients Std ErrorStat p-value Lower 95%  Upper 95% Intercept753.4225101.11497.45112.88E09957.3401549.5050%Attend 8.50141.07717.89296.73E106.329210.6735Salary 6.85E070.00060.00110.99910.00130.0013Spending0.00600.00461.28790.20470.00340.0153\begin{array}{lcrclcr}\hline & \text {Coefficients }& \text {Std Error} & \text {Stat } & \text {p-value} & \text { Lower 95\% }& \text { Upper 95\%} \\\hline \text { Intercept} & -753.4225 & 101.1149 & -7.4511 & 2.88 \mathrm{E}-09 & -957.3401 & -549.5050 \\\% \text {Attend }& 8.5014 & 1.0771 & 7.8929 &6.73 \mathrm{E}-10 & 6.3292 & 10.6735 \\ \text {Salary }& 6.85 \mathrm{E}-07 & 0.0006 & 0.0011 & 0.9991 & -0.0013 & 0.0013 \\ \text {Spending} & 0.0060 & 0.0046 & 1.2879 & 0.2047 & -0.0034 & 0.0153 \\\hline\end{array}


Model (II):\text {Model (II):}
CoefficientsStandard Error  t Stat p -value Intercept 753.408699.14517.59911.5291E09%Attendance8.50141.06457.98624.223E10Spending0.00600.00341.76760.0840\begin{array}{lcccc}\hline & \text {Coefficients} & \text {Standard Error }& \text { t Stat} & \text { p -value } \\\hline \text {Intercept }& -753.4086 & 99.1451 & -7.5991 & 1.5291 \mathrm{E}-09 \\\% \text {Attendance} & 8.5014 & 1.0645 & 7.9862 & 4.223 \mathrm{E}-10 \\ \text {Spending} & 0.0060 & 0.0034 & 1.7676 & 0.0840 \\\hline\end{array}


Model (III):\text {Model (III):}
 d f  SS  MS  F  Significance F  Regression28162.94294081.471439.87081.3201E10 Residual444504.1635102.3674 Total4612667.1064\begin{array}{lrrrrl}\hline & \text { d f } & \text { SS } & \text { MS } & \text { F } & \text { Significance F } \\\hline \text { Regression} & 2 & 8162.9429 & 4081.4714 & 39.8708 &1.3201 \mathrm{E}-10 \\ \text { Residual} & 44 & 4504.1635 & 102.3674 & & \\ \text { Total} & 46 & 12667.1064 & & & \\\hline\end{array}


Coefficients Standard Error t Stat p -valueIntercept 6672.83673267.73492.04200.0472% Attendance150.569469.95192.15250.0369%Attendance Squared0.85320.37432.27920.0276\begin{array}{lrcrr}\hline & \text {Coefficients }& \text {Standard Error} & \text { t Stat }& \text {p -value} \\\hline \text {Intercept }& 6672.8367 & 3267.7349 & 2.0420 & 0.0472 \\\% \text { Attendance} & -150.5694 & 69.9519 & -2.1525 & 0.0369 \\\% \text {Attendance Squared}& 0.8532 & 0.3743 & 2.2792 & 0.0276 \\\hline\end{array}

-Referring to Table 15-8, what are, respectively, the values of the variance inflationary factor of the 3 predictors?


Definitions:

Medical Practice

The professional practice of medicine, involving the diagnosis, treatment, and prevention of diseases, illnesses, and other physical and mental impairments in humans.

Care, Cure, Core Model

A framework in nursing that identifies care as the essence of nursing, cure as the medical aspect of care, and core as the organization and coordination of care and cure.

Practice Areas

Diverse fields within a profession, particularly in healthcare and law, where specialized knowledge and skills are applied.

Basic Nursing Care

Fundamental care practices that attend to the physical needs of patients, such as bathing, feeding, and comfort measures.

Related Questions