Examlex

Solved

TABLE 14-12
a Weight-Loss Clinic Wants to Use Regression Y=β0+β1X1+β2X2+β3X3+β4X1X2+β5X1X3+ε Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{1} X_{2}+\beta_{5} X_{1} X_{3}+\varepsilon

question 116

Multiple Choice

TABLE 14-12
A weight-loss clinic wants to use regression analysis to build a model for weight-loss of a client (measured in pounds) . Two variables thought to affect weight-loss are client's length of time on the weight loss program and time of session. These variables are described below:
Y = Weight- loss (in pounds)
X1 = Length of time in weight- loss program (in months)
X
2 = 1 if morning session, 0 if not
X3 = 1 if afternoon session, 0 if not (Base level = evening session)
Data for 12 clients on a weight- loss program at the clinic were collected and used to fit the interaction model:
Y=β0+β1X1+β2X2+β3X3+β4X1X2+β5X1X3+ε Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{1} X_{2}+\beta_{5} X_{1} X_{3}+\varepsilon

Partial output from Microsoft Excel follows:
 Regression Statistics  Multiple R 0.73514 R Square 0.540438 Adjusted R Square 0.157469 Standard Error 12.4147 Observations 12\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l c } \hline \text { Multiple R } & 0.73514 \\\text { R Square } & 0.540438 \\\text { Adjusted R Square } & 0.157469 \\\text { Standard Error } & 12.4147 \\\text { Observations } & 12 \\\hline\end{array}\end{array}

ANOVA
F=5.41118 Significance F=0.040201F = 5.41118 \quad\text { Significance } F = 0.040201

Coefficients  Standard Error  t Stat  p -valueIntercept 0.08974414.1270.00600.9951Length (X1) 6.225382.434732.549560.0479Morn Ses (X2) 2.21727222.14160.1001410.9235Aft Ses (X3) 11.82333.15453.5589010.0165Length*Morn Ses0.770583.5620.2163340.8359Length * Aft Ses0.541473.359880.1611580.8773\begin{array}{lcccr}\hline & \text {Coefficients }& \text { Standard Error }& \text { t Stat }& \text { p -value} \\\hline \text {Intercept }& 0.089744 & 14.127 & 0.0060 & 0.9951 \\ \text {Length (X1) }& 6.22538 & 2.43473 & 2.54956 & 0.0479 \\ \text {Morn Ses (X2) }& 2.217272 & 22.1416 & 0.100141 & 0.9235 \\ \text {Aft Ses (X3) } & 11.8233 & 3.1545 & 3.558901 & 0.0165 \\ \text {Length*Morn Ses} & 0.77058 & 3.562 & 0.216334 & 0.8359 \\ \text {Length * Aft Ses} & -0.54147 & 3.35988 & -0.161158 & 0.8773 \\\hline\end{array}

-Referring to Table 14-12, in terms of the þ's in the model, give the average change in weight-loss (Y) for every 1 month increase in time in the program (X1) when attending the afternoon session.


Definitions:

Ethical Compass

A guiding principle that helps individuals and organizations make decisions based on moral values and ethical standards.

Insurance

A contract represented by a policy in which an individual or entity receives financial protection against losses from an insurer.

Interconnectedness

The state of being connected with each other, often referring to systems, people, or things that are linked in such a way that they affect and depend on each other.

Social Media Revolution

The significant impact that social media has had on society, altering communication, information sharing, and business practices worldwide.

Related Questions