Examlex

Solved

TABLE 14-6
One of the Most Common Questions of Prospective

question 65

Multiple Choice

TABLE 14-6
One of the most common questions of prospective house buyers pertains to the average cost of heating in dollars (Y) . To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X1) , the amount of insulation in inches (X2) , the number of windows in the house (X3) , and the age of the furnace in years (X4) . Given below are the EXCEL outputs of two regression models.
 Model 1 Regression Statistics  R Square 0.8080 AdjustedR S quare 0.7568 Observations 20\begin{array}{ll}\text { Model } 1 \\\text { Regression Statistics } \\\hline \text { R Square }& 0.8080 \\\text { AdjustedR S quare }& 0.7568 \\\text { Observations } &20 \end{array}

ANOVA
 df SSMSF Signuficance F  Regression 4169503.424142375.8615.78742.96869E05 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{lrrccc} & \text { df } &{S S} & M S & F & \text { Signuficance F } \\\hline \text { Regression } & 4 & 169503.4241 & 42375.86 & 15.7874 & 2.96869 E-05 \\\text { Residual } & 15 & 40262.3259 & 2684.155 & & \\\text { Total } & 19 & 209765.75 & & & \\\hline\end{array}

 Standard LowerUpper CoefficientsError t Stat p -value90.0%90.0% Intercept 421.427777.86145.41257.2E05284.9327557.9227 X1 (Temperature) 4.50980.81295.54765.58E055.93493.0847X2 (Insulation)  14.90295.05082.95050.009923.75736.0485 X3 (Windows)  0.21514.86750.04420.96538.31818.7484 X4 (Furnace Age) 6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr} && \text { Standard } & & \text {Lower} & \text {Upper }\\& \text {Coefficients} & \text {Error} & \text { t Stat } & \text {p -value} & 90.0 \% & 90.0 \% \\ \hline \text { Intercept }& 421.4277 & 77.8614 & 5.4125 & 7.2 \mathrm{E}-05& 284.9327 & 557.9227 \\ \text { X{1} (Temperature) } & -4.5098 & 0.8129 & -5.5476 &5.58 \mathrm{E}-05 & -5.9349 & -3.0847 \\ \text {X{2} (Insulation) }& -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\ \text { X{3} (Windows) }& 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\ \text { X{4} (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702 \\\hline\end{array}

 Model 2Regression StatisticsR Square 0.7768Adjusted R Square 0.7506Observations 20\begin{array}{ll} \text { Model 2} \\\hline \text {Regression Statistics} \\\hline \text {R Square }& 0.7768\\ \text {Adjusted R Square }&0.7506 \\ \text {Observations }& 20 \\\hline\end{array}
ANOVA
 d f SS  MS SS Significance F Regression2162958.227781479.1129.59232.9036E06Residual 1746807.52222753.384Total 19209765.75\begin{array}{lrrrcc}\hline & \text { d f} & \text { SS } & \text { MS } & \text {SS } & \text {Significance F } \\\hline \text {Regression} & 2 & 162958.2277 & 81479.11 & 29.5923 & 2.9036 \mathrm{E}-06 \\ \text {Residual }& 17 & 46807.5222 & 2753.384 & & \\ \text {Total }& 19 & 209765.75 & & & \\\hline\end{array}

 Standard  Lower UpperCoefficients  Error  t Stat  p -value95%95%Intercept 489.322743.982611.12533.17E09396.5273582.1180 X1 (Temperature)  5.11030.69517.35151.13E066.57693.6437 X2 (Insulation)  14.71954.88643.01230.007825.02904.4099\begin{array}{lcccccc} && \text { Standard } & &\text { Lower} &\text { Upper} \\& \text {Coefficients }&\text { Error }&\text { t Stat }& \text { p -value} &95 \%& 95 \% \\\hline \text {Intercept }& 489.3227 & 43.982611 .1253 &3.17 \mathrm{E}-09& 396.5273 & 582.1180 \\\text { X{1} (Temperature) }& -5.1103 & 0.6951-7.3515 & 1.13 \mathrm{E}-06 & -6.5769 & -3.6437 \\\text { X{2} (Insulation) }& -14.7195 & 4.8864-3.0123 & 0.0078 & -25.0290 & -4.4099 \\\hline\end{array}

-Referring to Table 14-6, what can we say about Model 1?

Learn how to compute the margin of safety and its implications for business stability.
Grasp the concept and calculation of contribution margin and contribution margin ratio.
Understand how changes in sales volume, prices, and costs affect net income.
Learn to calculate and interpret the degree of operating leverage.

Definitions:

Psychophysicists

Scientists who study how physical stimuli (e.g., light, sound) are translated into psychological experiences, focusing on the relationships between physical properties of stimuli and sensory perceptions.

Experiments

Controlled tests or investigations conducted to discover or test a hypothesis.

Subjective Evaluation

An assessment based on personal opinions, feelings, or tastes, rather than external facts or criteria.

Signal-Detection Theory

A means to quantify the ability to discern between information-bearing patterns and random patterns that distract from the information.

Related Questions