Examlex

Solved

TABLE 13-12
the Manager of the Purchasing Department of a Large

question 96

True/False

TABLE 13-12
The manager of the purchasing department of a large banking organization would like to develop a model to predict the amount of time (measured in hours) it takes to process invoices. Data are collected from a sample of 30 days, and the number of invoices processed and completion time in hours is recorded. Below is the regression output:
 Regression Statistics  Multiple R 0.9947 R Square 0.8924 Adjusted R Square 0.8886 Standard Error 0.3342 ations 30\begin{array}{l}\text { Regression Statistics }\\\begin{array} { l c } \hline \text { Multiple R } & 0.9947 \\\text { R Square } & 0.8924 \\\text { Adjusted R Square } & 0.8886 \\\text { Standard Error } & 0.3342 \\\text { ations } & 30 \\\hline\end{array}\end{array}

 d f  SS MS F  Significance F Regression125.943825.9438232.22004.3946E15Residual 283.12820.1117Total 2929.072\begin{array}{lrrccc}\hline & \text { d f } & \text { SS } & \text {MS} & \text { F } & \text { Significance F } \\\hline \text {Regression} & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm{E}-15 \\ \text {Residual }& 28 & 3.1282 & 0.1117 & & \\ \text {Total }& 29 & 29.072 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  p -valueLower 95%Upper 95% Invoices 0.40240.12363.25590.00300.14920.6555Processed 0.01260.000815.23884.3946E150.01090.0143\begin{array}{lrrrrrr}\hline & \text { Coefficients }& \text { Standard Error }& \text { t Stat }& \text { p -value}& \text {Lower 95\%} & \text {Upper 95\%} \\\hline \text { Invoices }& 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \text {Processed }& 0.0126 & 0.0008 & 15.2388 & 4.3946 \mathrm{E}-15 & 0.0109 & 0.0143 \\\hline\end{array}

 TABLE 13-12 The manager of the purchasing department of a large banking organization would like to develop a model to predict the amount of time (measured in hours) it takes to process invoices. Data are collected from a sample of 30 days, and the number of invoices processed and completion time in hours is recorded. Below is the regression output:   \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l c }  \hline \text { Multiple R } & 0.9947 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R Square } & 0.8886 \\ \text { Standard Error } & 0.3342 \\ \text { ations } & 30 \\ \hline \end{array} \end{array}     \begin{array}{lrrccc} \hline & \text { d f } &  \text { SS } &  \text {MS} &  \text { F } & \text { Significance  F } \\ \hline  \text {Regression} & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm{E}-15  \\  \text {Residual }& 28 & 3.1282 & 0.1117 & & \\  \text {Total }& 29 & 29.072 & & & \\ \hline \end{array}    \begin{array}{lrrrrrr} \hline & \text { Coefficients }& \text { Standard Error }& \text { t Stat }&  \text { p -value}& \text {Lower 95\%} &  \text {Upper 95\%} \\ \hline \text { Invoices }& 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\  \text {Processed }& 0.0126 & 0.0008 & 15.2388 &  4.3946 \mathrm{E}-15  & 0.0109 & 0.0143 \\ \hline \end{array}          -Referring to Table 13-12, there is sufficient evidence that the amount of time needed linearly depends on the number of invoices processed at a 1% level of significance.

 TABLE 13-12 The manager of the purchasing department of a large banking organization would like to develop a model to predict the amount of time (measured in hours) it takes to process invoices. Data are collected from a sample of 30 days, and the number of invoices processed and completion time in hours is recorded. Below is the regression output:   \begin{array}{l} \text { Regression Statistics }\\ \begin{array} { l c }  \hline \text { Multiple R } & 0.9947 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R Square } & 0.8886 \\ \text { Standard Error } & 0.3342 \\ \text { ations } & 30 \\ \hline \end{array} \end{array}     \begin{array}{lrrccc} \hline & \text { d f } &  \text { SS } &  \text {MS} &  \text { F } & \text { Significance  F } \\ \hline  \text {Regression} & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm{E}-15  \\  \text {Residual }& 28 & 3.1282 & 0.1117 & & \\  \text {Total }& 29 & 29.072 & & & \\ \hline \end{array}    \begin{array}{lrrrrrr} \hline & \text { Coefficients }& \text { Standard Error }& \text { t Stat }&  \text { p -value}& \text {Lower 95\%} &  \text {Upper 95\%} \\ \hline \text { Invoices }& 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\  \text {Processed }& 0.0126 & 0.0008 & 15.2388 &  4.3946 \mathrm{E}-15  & 0.0109 & 0.0143 \\ \hline \end{array}          -Referring to Table 13-12, there is sufficient evidence that the amount of time needed linearly depends on the number of invoices processed at a 1% level of significance.

-Referring to Table 13-12, there is sufficient evidence that the amount of time needed linearly depends on the number of invoices processed at a 1% level of significance.


Definitions:

Statute of Frauds

A rule of law mandating that specific contract categories must be documented and signed in order to be legally binding.

Writing Requirement

The legal necessity for certain contracts to be in writing in order to be enforceable, such as real estate transactions.

Reliance

Dependence or trust in something or someone for support or to fulfill needs.

Subdivision

The act of dividing land into plots or pieces that may be developed, sold, or otherwise used separately.

Related Questions