Examlex

Solved

TABLE 13-9
It Is Believed That, the Average Numbers

question 62

Multiple Choice

TABLE 13-9
It is believed that, the average numbers of hours spent studying per day (HOURS) during undergraduate education should have a positive linear relationship with the starting salary (SALARY, measured in thousands of dollars per month) after graduation. Given below is the Excel output from regressing starting salary on number of hours spent studying per day for a sample of 51 students. NOTE: Some of the numbers in the output are purposely erased.
 Regression Stedistics  Multiple R 0.8857 RSquare 0.7845 Adjusted R Square 0.7801 Standard Error 1.3704\begin{array}{ll}\text { Regression Stedistics } \\\hline \text { Multiple R } & 0.8857 \\\text { RSquare } & 0.7845 \\\text { Adjusted R Square } & 0.7801 \\\text { Standard Error } & 1.3704\end{array}

 Observations 51\text { Observations } \quad 51

ANOVAANOVA
dfSSMSF Significance F Regression 1335.0472335.0473178.3859 Residual 1.8782 Total 50427.0798\begin{array}{lccrcc}\hline & d f & S S &{M S} & F & \text { Significance } F \\\hline \text { Regression } & 1 & 335.0472 & 335.0473 & 178.3859 \\\text { Residual } & & 1.8782 & \\\text { Total } & 50 & 427.0798 & & \\\hline\end{array}


 Coeffcients  Standard Error t Stat p-value  Lower 95% Upper 95%  Intercept 1.89400.40184.71342.051E052.70151.0865 Hours 0.97950.073313.35615.944E180.83211.1269\begin{array}{lccccrr}\hline & \text { Coeffcients } & \text { Standard Error }& t \text { Stat } & p \text {-value } & \text { Lower 95\%} & \text { Upper 95\% } \\\hline \text { Intercept } & -1.8940 & 0.4018 & -4.7134 & 2.051 \mathrm{E}-05 & -2.7015 & -1.0865 \\\text { Hours } & 0.9795 & 0.0733 & 13.3561 & 5.944 \mathrm{E}-18 & 0.8321 & 1.1269 \\\hline\end{array}


-Referring to Table 13-9, to test the claim that average SALARY depends positively on HOURS against the null hypothesis that average SALARY does not depend linearly on HOURS, the p-value of the test statistic is


Definitions:

Confidence Interval

A range of values, derived from the sample statistics, that is likely to contain the population parameter with a certain level of confidence.

Population Mean

Population mean is the average of all the values in a population.

Standard Deviation

A measure of the amount of variation or dispersion in a set of values, indicating how spread out the numbers are from the mean.

Confidence Interval

A series of values, obtained from statistics of a sample, that has a high probability of including the value of an unseen population parameter.

Related Questions