Examlex

Solved

TABLE 13- 11
a Company That Has the Distribution Rights

question 191

Short Answer

TABLE 13- 11
A company that has the distribution rights to home video sales of previously released movies would like to use the box office gross (in millions of dollars) to estimate the number of units (in thousands of units) that it can expect to sell. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different movie titles:
 Regression Statistics  Multiple R 0.8531 R Square 0.7278 Adjusted R Square 0.7180 Standard Error 47.8668 Observations 30\begin{array}{lc}\hline \text { Regression Statistics } & \\\hline \text { Multiple R } & 0.8531 \\\text { R Square } & 0.7278 \\\text { Adjusted R Square } & 0.7180 \\\text { Standard Error } & 47.8668 \\\text { Observations } & 30\end{array}

ANOVA
 d f SS  MS Significance FRegression 1171499.78171499.7874.85052.1259E09Residual2864154.422291.23Total29235654.20\begin{array}{lrrrrr}\hline &\text { d f}& \text { SS } & \text { MS } & \text {F }& \text {Significance F} \\\hline \text {Regression }& 1 & 171499.78 & 171499.78 & 74.8505 & 2.1259E-09 \\\text {Residual} & 28 & 64154.42 & 2291.23 & & \\\text {Total} & 29 & 235654.20 & & & \\\hline\end{array}

Coefficients  Standard Error t Stat  p -value Lower 95% Upper 95%  Intercept 76.535111.83186.46865.24E0752.2987100.7716Gross4.33310.50088.65162.13E093.30725.3590\begin{array}{lrrrrrr}\hline & \text {Coefficients }& \text { Standard Error}& \text { t Stat }& \text { p -value }& \text {Lower 95\% }& \text {Upper 95\% }\\\hline \text { Intercept }& 76.5351 & 11.8318 & 6.4686 & 5.24 \mathrm{E}-07& 52.2987 & 100.7716 \\ \text {Gross} & 4.3331 & 0.5008 & 8.6516 & 2.13 \mathrm{E}-09 & 3.3072 & 5.3590 \\\hline\end{array}

 TABLE 13- 11 A company that has the distribution rights to home video sales of previously released movies would like to use the box office gross (in millions of dollars) to estimate the number of units (in thousands of units) that it can expect to sell. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different movie titles:   \begin{array}{lc} \hline \text { Regression Statistics } & \\ \hline \text { Multiple R } & 0.8531 \\ \text { R Square } & 0.7278 \\ \text { Adjusted R Square } & 0.7180 \\ \text { Standard Error } & 47.8668 \\ \text { Observations } & 30 \end{array}   ANOVA  \begin{array}{lrrrrr} \hline &\text { d f}& \text { SS } & \text { MS } & \text {F }& \text {Significance F}  \\ \hline \text {Regression }& 1 & 171499.78 & 171499.78 & 74.8505 & 2.1259E-09 \\ \text {Residual} & 28 & 64154.42 & 2291.23 & & \\ \text {Total} & 29 & 235654.20 & & & \\ \hline\end{array}    \begin{array}{lrrrrrr} \hline &  \text {Coefficients }& \text { Standard Error}& \text { t  Stat }&  \text { p -value }&  \text {Lower 95\% }& \text {Upper 95\% }\\ \hline \text { Intercept }& 76.5351 & 11.8318 & 6.4686 & 5.24 \mathrm{E}-07& 52.2987 & 100.7716 \\  \text {Gross} & 4.3331 & 0.5008 & 8.6516 & 2.13 \mathrm{E}-09 & 3.3072 & 5.3590 \\ \hline \end{array}        -Referring to Table 13-11, predict the video unit sales for a movie that had a box office gross of $30 millions.  TABLE 13- 11 A company that has the distribution rights to home video sales of previously released movies would like to use the box office gross (in millions of dollars) to estimate the number of units (in thousands of units) that it can expect to sell. Following is the output from a simple linear regression along with the residual plot and normal probability plot obtained from a data set of 30 different movie titles:   \begin{array}{lc} \hline \text { Regression Statistics } & \\ \hline \text { Multiple R } & 0.8531 \\ \text { R Square } & 0.7278 \\ \text { Adjusted R Square } & 0.7180 \\ \text { Standard Error } & 47.8668 \\ \text { Observations } & 30 \end{array}   ANOVA  \begin{array}{lrrrrr} \hline &\text { d f}& \text { SS } & \text { MS } & \text {F }& \text {Significance F}  \\ \hline \text {Regression }& 1 & 171499.78 & 171499.78 & 74.8505 & 2.1259E-09 \\ \text {Residual} & 28 & 64154.42 & 2291.23 & & \\ \text {Total} & 29 & 235654.20 & & & \\ \hline\end{array}    \begin{array}{lrrrrrr} \hline &  \text {Coefficients }& \text { Standard Error}& \text { t  Stat }&  \text { p -value }&  \text {Lower 95\% }& \text {Upper 95\% }\\ \hline \text { Intercept }& 76.5351 & 11.8318 & 6.4686 & 5.24 \mathrm{E}-07& 52.2987 & 100.7716 \\  \text {Gross} & 4.3331 & 0.5008 & 8.6516 & 2.13 \mathrm{E}-09 & 3.3072 & 5.3590 \\ \hline \end{array}        -Referring to Table 13-11, predict the video unit sales for a movie that had a box office gross of $30 millions.
-Referring to Table 13-11, predict the video unit sales for a movie that had a box office gross of $30 millions.


Definitions:

Security Interest

is a legal claim or right granted over assets as collateral to secure the performance of an obligation, usually the repayment of a loan.

Security Interest

A legal claim or lien on property or assets, granted to secure the performance of an obligation or repayment of a debt.

Proportionate Shares

The allocation of benefits, responsibilities, or liabilities among parties in relation to their respective interests or contributions.

Priority

The status of having precedence or importance over others, often used in the context of orders of payment, task handling, or legal rights.

Related Questions