Examlex

Solved

Let X1,X2,,X20X _ { 1 } , X _ { 2 } , \ldots \ldots , X _ { 20 }

question 37

Short Answer

Let X1,X2,,X20X _ { 1 } , X _ { 2 } , \ldots \ldots , X _ { 20 } be a random sample from a normal population with mean μ1 and variance σ12=25, and let Y1,Y2,,Y25\mu _ { 1 } \text { and variance } σ _ { 1 } ^ { 2 } = 25 \text {, and let } Y _ { 1 } , Y _ { 2 } , \ldots \ldots , Y _ { 25 } be a random sample from a normal population with mean μ1 and variance σ12=25, and let Y1,Y2,,Y25\mu _ { 1 } \text { and variance } \sigma _ { 1 } ^ { 2 } = 25 \text {, and let } Y _ { 1 } , Y _ { 2 } , \ldots \ldots , Y _ { 25 } be a random sample from a normal population with mean μ2 and variance σ22\mu _ { 2 } \text { and variance } \sigma _ { 2 } ^ { 2 } \text {, } =16, and that X and Y samples are independent of one another. If the sample mean values are xˉ=30 and yˉ=32\bar { x } = 30 \text { and } \bar { y } = 32 then the value of the test statistic to test H0:μ1μ2=0 versus HΔ:μ1μ10H _ { 0 } : \mu _ { 1 } - \mu _ { 2 } = 0 \text { versus } H _ { \Delta } : \mu _ { 1 } - \mu _ { 1 } \neq 0 is z = __________ and that HoH _ { o } will be rejected at .01 significance level if zz \geq\underline{\quad\quad} or zz \leq\underline{\quad\quad}


Definitions:

Related Questions