Examlex

Solved

A Statistics Professor Investigated Some of the Factors That Affect y=β0+β1x1+β2x2+β3x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon

question 102

Essay

A statistics professor investigated some of the factors that affect an individual student's final grade in his or her course. He proposed the multiple regression model: y=β0+β1x1+β2x2+β3x3+εy = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon .
Where:
y = final mark (out of 100). x1x _ { 1 } = number of lectures skipped. x2x _ { 2 } = number of late assignments. X3X _ { 3 } = mid-term test mark (out of 100).
The professor recorded the data for 50 randomly selected students. The computer output is shown below. THE REGRESSION EQUATION IS
 A statistics professor investigated some of the factors that affect an individual student's final grade in his or her course. He proposed the multiple regression model:  y = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 } + \varepsilon  . Where: y = final mark (out of 100).  x _ { 1 }  = number of lectures skipped.  x _ { 2 }  = number of late assignments.  X _ { 3 }  = mid-term test mark (out of 100). The professor recorded the data for 50 randomly selected students. The computer output is shown below. THE REGRESSION EQUATION IS    = 41.6 - 3.18 x _ { 1 } - 1.17 x _ { 2 } + .63 x _ { 3 }    \begin{array}{|c|ccc|} \hline \text { Predictor } & \text { Coef } & \text { StDev } & \mathrm{T} \\ \hline \text { Constant } & 41.6 & 17.8 & 2.337 \\ x_{1} & -3.18 & 1.66 & -1.916 \\ x_{2} & -1.17 & 1.13 & -1.035 \\ x_{3} & 0.63 & 0.13 & 4.846 \\ \hline \end{array}     \mathrm{S}=13.74 \quad \mathrm{R}-\mathrm{Sq}=30.0 \%   ANALYSIS OF VARIANCE  \begin{array}{|l|cccc|} \hline \text { Source of Variation } & \mathrm{df} & \mathrm{SS} & \mathrm{MS} & \mathrm{F} \\ \hline \text { Regression } & 3 & 3716 & 1238.667 & 6.558 \\ \text { Error } & 46 & 8688 & 188.870 & \\ \hline \text { Total } & 49 & 12404 & & \\ \hline \end{array}  Do these data provide enough evidence to conclude at the 5% significance level that the final mark and the number of skipped lectures are linearly related? =41.63.18x11.17x2+.63x3 = 41.6 - 3.18 x _ { 1 } - 1.17 x _ { 2 } + .63 x _ { 3 }
 Predictor  Coef  StDev T Constant 41.617.82.337x13.181.661.916x21.171.131.035x30.630.134.846\begin{array}{|c|ccc|}\hline \text { Predictor } & \text { Coef } & \text { StDev } & \mathrm{T} \\\hline \text { Constant } & 41.6 & 17.8 & 2.337 \\x_{1} & -3.18 & 1.66 & -1.916 \\x_{2} & -1.17 & 1.13 & -1.035 \\x_{3} & 0.63 & 0.13 & 4.846 \\\hline\end{array}


S=13.74RSq=30.0%\mathrm{S}=13.74 \quad \mathrm{R}-\mathrm{Sq}=30.0 \%

ANALYSIS OF VARIANCE
 Source of Variation dfSSMSF Regression 337161238.6676.558 Error 468688188.870 Total 4912404\begin{array}{|l|cccc|}\hline \text { Source of Variation } & \mathrm{df} & \mathrm{SS} & \mathrm{MS} & \mathrm{F} \\\hline \text { Regression } & 3 & 3716 & 1238.667 & 6.558 \\\text { Error } & 46 & 8688 & 188.870 & \\\hline \text { Total } & 49 & 12404 & & \\\hline\end{array} Do these data provide enough evidence to conclude at the 5% significance level that the final mark and the number of skipped lectures are linearly related?


Definitions:

Mode

The value that occurs most frequently in a given set of data.

Distribution

In statistics, a mathematical representation of the observed or possible frequencies of occurrences of a range of outcomes.

Normally Distributed

A statistical term describing data that fall into a symmetrical, bell-shaped curve where most observations cluster around the mean.

Standard Deviation

An analytical tool that assesses the level of diversity or deviation of data points from their central value.

Related Questions