Examlex

Solved

In the Following Proof, Which Justification Is Correct for Line

question 85

Multiple Choice

In the following proof, which justification is correct for line 7? (1)  (x) {[Cx(DxEx) ]Fx}  Premise (2)  (y) (EyFy)  /(x) Cx  Premise/Conclusion (3)  EaFa  2 EI  (4)  [Ca(DaEa) ]DFa1UI (5)  Fa 3Simp  (6)  [Ca(DaEa) ]  4,5MT  (7)  Cav(DavEa) ] \begin{array}{llcc} \text {(1) \( (x) \{[\mathrm{C} x \cdot(\mathrm{D} x \vee \mathrm{E} x) ] \supset \mathrm{F} x\} \) } & & \text { Premise} \\ \text { (2) \( (\exists y) (E y * \sim \mathrm{Fy}) \) } & \text {\(/(\exists x) \sim C x\) }& \text { Premise/Conclusion }\\ \text {(3) \( \mathrm{Ea} * \sim \mathrm{Fa} \) } && \text { 2 EI }\\ \text { (4) \( [\mathrm{Ca} \cdot(\mathrm{Da} \cup \mathrm{Ea}) ] D \mathrm{Fa} \) } && \text {\( 1 \mathrm{UI} \) }\\ \text {(5) \( -\mathrm{Fa} \) } && \text {\( 3 \mathrm{Simp} \) }\\ \text { (6) \( \sim[\mathrm{Ca} \cdot(\mathrm{Da} \vee \mathrm{Ea}) ] \) } && \text { \( 4,5 \mathrm{MT} \) }\\ \text { (7) \( \sim \mathrm{Ca} v \sim(\mathrm{Da} v \mathrm{Ea}) ] \) } &\\\end{array}


Definitions:

Meso Form

A type of stereoisomer with multiple chiral centers that is superimposable on its mirror image due to a plane of symmetry, rendering it achiral.

Chirality Centers

Specific atoms within a molecule that have four different groups attached, resulting in non-superimposable mirror images.

Chiral Molecule

A molecule that cannot be superimposed on its mirror image, often having a carbon atom bonded to four different groups.

Chiral

Describes a molecule that has a non-superimposable mirror image, often leading to molecules with distinct left-handed (S) and right-handed (R) configurations.

Related Questions