Examlex

Solved

LINDO Output Is Given for the Following Linear Programming Problem

question 11

Essay

LINDO output is given for the following linear programming problem.
MIN
12 X1 + 10 X2 + 9 X3
SUBJECT TO
2) 5 X1 + 8 X2 + 5 X3 > = 60
3) 8 X1 + 10 X2 + 5 X3 > = 80
END
LP OPTIMUM FOUND AT STEP 1
OBJECTIVE FUNCTION VALUE
1) 80.000000  VARIABLE  VALUE  REDUCED COST  X1 .0000004.000000 X2 8.000000.000000 X3 .0000004.000000\begin{array} { c c c } \text { VARIABLE } & \text { VALUE } & \text { REDUCED COST } \\\text { X1 } & .000000 & 4.000000 \\\text { X2 } & 8.000000 & .000000 \\\text { X3 } & .000000 & 4.000000\end{array}  ROW  SLACK OR SURPLUS  DUAL PRICE  2) 4.000000.0000003).0000001.000000\begin{array}{rrr}\text { ROW } & \text { SLACK OR SURPLUS } & \text { DUAL PRICE }\\\text { 2) } & 4.000000 & .000000 \\3) & .000000 & -1.000000\end{array} NO. ITERATIONS= 1
RANGES IN WHICH THE BASIS IS UNCHANGED:  OBJ. COEFFICIENT RANGES  CURRENT  ALLOWABLE  ALLOWABLE  VARIABLE  COEFFICIENT  INCREASE  DECREASE  X1 12.000000 INFINITY 4.000000 X2 10.0000005.00000010.000000 X3 9.000000 INFINITY 4.000000\begin{array} { c c c c } && { \text { OBJ. COEFFICIENT RANGES } } \\ & \text { CURRENT } & \text { ALLOWABLE } & \text { ALLOWABLE } \\\text { VARIABLE }&\text { COEFFICIENT }& \text { INCREASE } & \text { DECREASE } \\\hline \text { X1 } & 12.000000 & \text { INFINITY } & 4.000000 \\\text { X2 } & 10.000000 & 5.000000 & 10.000000 \\\text { X3 } & 9.000000 &\text { INFINITY } & 4.000000\\\end{array}  RIGHT HAND SIDE RANGES  CURRENT  ALLOWABLE  ALLOWABLE  ROW  RHS  INCREASE  DECREASE 260.0000004.000000 INFINITY 380.000000 INFINITY 5.000000\begin{array}{cccc}&&&\text { RIGHT HAND SIDE RANGES }\\&\text { CURRENT } & \text { ALLOWABLE }& \text { ALLOWABLE }\\\text { ROW } & \text { RHS } & \text { INCREASE } & \text { DECREASE } \\\hline2 & 60.000000 & 4.000000 & \text { INFINITY } \\3 & 80.000000 & \text { INFINITY } & 5.000000\end{array}
a.What is the solution to the problem?
b.Which constraints are binding?
c.Interpret the reduced cost for x1.
d.Interpret the dual price for constraint 2.
e.What would happen if the cost of x1 dropped to 10 and the cost of x2 increased to 12?

Recognize the empirical approach and its application in psychology.
Identify key attitudes of scientific inquiry, including curiosity, skepticism, and humility.
Understand the historical development of psychology as a scientific discipline.
Recognize the significance of introspection and its role in early psychology.

Definitions:

Psychologists

Professionals specializing in the study and treatment of the mind and behavior, encompassing various aspects of human experience.

Watson And Rayner

Known for their Little Albert experiment, they demonstrated that emotional responses could be conditioned using classical conditioning techniques.

Classical Conditioned

Classical Conditioning is a type of learning in which a neutral stimulus comes to elicit a reflexive response because it has been associated with a stimulus that already produces that response.

Little Albert

A classic experiment in psychology conducted by John B. Watson and Rosalie Rayner demonstrating how emotional responses can be conditioned in humans.

Related Questions