A statistics course at a large university is taught in each semester. A student has noticed that the students in semester 1 and semester 2 are enrolled in different degrees. To investigate, the student takes a random sample of 25 students from semester 1 and 25 students from semester 2 and records their final marks (%) provided in the table below. Excel was used to generate descriptive statistics on each sample.
Assume that student final marks are normally distributed in each semester. Sample of semester 1 final marks 65854596824555578364536355556276856052885377836771 Sample of semester 2 final marks 45464581524082546065535487566058757753657559636554 Semester 1 Mean Stan dard Error Median Mode Standard Deviation Sample Variance Range Minimum Maximum Sum Count 65.482.679635513.395179.43434588163725 Semester 2 Mean Standard Error Median Mode Standard Deviation Sample Variance Range Minimum Maximum Sum Count 60.962.5136595412.568157.96474087152425 Estimate and interpret a 90% confidence interval of the ratio of population variances of final student marks from semester 1 and semester 2.
Acquisition
The process of learning or obtaining something, such as skills, knowledge, or possessions.
Extinction
The process in which a conditioned response gradually diminishes and eventually disappears as the conditioned stimulus is repeatedly presented without the unconditioned stimulus.
Spontaneous Recovery
The reemergence of a previously extinguished conditioned response after a pause.
Classical Conditioning
A teaching process in which two stimuli are repetitively paired; a response first initiated by the second stimulus eventually becomes initiated by the first stimulus alone.