Examlex

Solved

The Linear Programming Problem

question 18

Essay

The linear programming problem:
Max
6x1 + 2x2 + 3x3 + 4x4
s.t.
x1 + x2 + x3 + x4 ≤ 100
4x1 + x2 + x3 + x4 ≤ 160
3x1 + x2 + 2x3 + 3x4 ≤ 240
x1, x2, x 3, x4 ≥ 0

has the final tableau: The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES
Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem.
LINEAR PROGRAMMING PROBLEM
MAX
6X1+2X2+3X3+4X4
S.T.
1) 1X1 + 1X2 + 1X3 + 1X4 < 100
2) 4X1 + 1X2 + 1X3 + 1X4 < 160
3) 3X1 + 1X2 + 2X3 + 3X4 < 240

OPTIMAL SOLUTION
Objective Function Value = The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES  The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES
OBJECTIVE COEFFICIENT RANGES The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES
RIGHT HAND SIDE RANGES The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES


Definitions:

Limited Time

A specific period which is restricted or short in duration, often used to highlight the availability of an offer or opportunity.

Speaking Via

The act of communicating or conveying information through a particular medium or channel.

Voice Messages

Audio recordings sent and received between individuals or groups through electronic devices as a form of communication.

One Week

A period of time consisting of seven consecutive days.

Related Questions