Examlex

Solved

The Linear Programming Problem

question 18

Essay

The linear programming problem:
Max
6x1 + 2x2 + 3x3 + 4x4
s.t.
x1 + x2 + x3 + x4 ≤ 100
4x1 + x2 + x3 + x4 ≤ 160
3x1 + x2 + 2x3 + 3x4 ≤ 240
x1, x2, x 3, x4 ≥ 0

has the final tableau: The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES
Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem.
LINEAR PROGRAMMING PROBLEM
MAX
6X1+2X2+3X3+4X4
S.T.
1) 1X1 + 1X2 + 1X3 + 1X4 < 100
2) 4X1 + 1X2 + 1X3 + 1X4 < 160
3) 3X1 + 1X2 + 2X3 + 3X4 < 240

OPTIMAL SOLUTION
Objective Function Value = The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES  The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES
OBJECTIVE COEFFICIENT RANGES The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES
RIGHT HAND SIDE RANGES The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES


Definitions:

Variable Cost

Costs that vary in direct relation to a business's operations, like expenses for raw materials or manufacturing supplies.

Activity Decreases

Reductions in the volume or intensity of activities, often leading to lower costs or changes in operational strategies.

Cost Estimation

The process of predicting the amount of resources, especially money, time, and labor, necessary to complete a project or produce a product.

Strong Correlation

A statistical relationship between two variables where a change in one is strongly associated with a change in the other.

Related Questions