Examlex

Solved

The Linear Programming Problem

question 18

Essay

The linear programming problem:
Max
6x1 + 2x2 + 3x3 + 4x4
s.t.
x1 + x2 + x3 + x4 ≤ 100
4x1 + x2 + x3 + x4 ≤ 160
3x1 + x2 + 2x3 + 3x4 ≤ 240
x1, x2, x 3, x4 ≥ 0

has the final tableau: The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES
Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem.
LINEAR PROGRAMMING PROBLEM
MAX
6X1+2X2+3X3+4X4
S.T.
1) 1X1 + 1X2 + 1X3 + 1X4 < 100
2) 4X1 + 1X2 + 1X3 + 1X4 < 160
3) 3X1 + 1X2 + 2X3 + 3X4 < 240

OPTIMAL SOLUTION
Objective Function Value = The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES  The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES
OBJECTIVE COEFFICIENT RANGES The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES
RIGHT HAND SIDE RANGES The linear programming problem: Max 6x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> + 4x<sub>4</sub> s.t. x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 100 4x<sub>1</sub> + x<sub>2</sub> + x<sub>3</sub> + x<sub>4</sub> ≤ 160 3x<sub>1</sub> + x<sub>2</sub> + 2x<sub>3</sub> + 3x<sub>4</sub> ≤ 240 x<sub>1</sub>, x<sub>2</sub>, x <sub>3</sub>, x<sub>4</sub> ≥ 0 ​ has the final tableau:   ​ Fill in the table below to show what you would have found if you had used The Management Scientist to solve this problem. LINEAR PROGRAMMING PROBLEM MAX 6X1+2X2+3X3+4X4 S.T. 1) 1X1 + 1X2 + 1X3 + 1X4 < 100 2) 4X1 + 1X2 + 1X3 + 1X4 < 160 3) 3X1 + 1X2 + 2X3 + 3X4 < 240 ​ OPTIMAL SOLUTION Objective Function Value =   ​   ​ OBJECTIVE COEFFICIENT RANGES   ​ RIGHT HAND SIDE RANGES


Definitions:

Addictions

Chronic disorders characterized by compulsive drug seeking, drug abuse, and harmful consequences.

Support Group

A group of people with common experiences or concerns who provide each other with encouragement, comfort, and advice.

Therapeutic Communication

The use of specific strategies by healthcare professionals to encourage effective dialogue with patients and support their emotional and psychological well-being.

Family Coping

The methods or strategies employed by family members to deal with stressful or challenging situations affecting one or more of its members.

Related Questions