Examlex

Solved

Suppose That Curl F(1,2,1)=3i2j+5k\vec { F } ( 1,2,1 ) = 3 \vec { i } - 2 \vec { j } + - 5 \vec { k }

question 35

Essay

Suppose that curl F(1,2,1)=3i2j+5k\vec { F } ( 1,2,1 ) = 3 \vec { i } - 2 \vec { j } + - 5 \vec { k } curl F(0,2,1)=6i+2j+5k\vec { F } ( 0,2,1 ) = 6 \vec { i } + 2 \vec { j } + 5 \vec { k } and curl F(1,3,1)=3i+2j+10k { \vec { F } } ( 1,3 , - 1 ) = - 3 \vec { i } + 2 \vec { j } + 10 \vec { k } Estimate the following line integrals.
(a) C1Fdr\int _ { C _ { 1 } } \vec { F } \cdot d \vec { r } where C1 is given by r(t)=i+(3+0.1cost)j+(0.1sint1)k,0t2π\vec { r } ( t ) = \vec { i } + ( 3 + 0.1 \cos t ) \vec { j } + ( 0.1 \sin t - 1 ) \vec { k } , \quad 0 \leq t \leq 2 \pi (b) c2Fdr\int _ { c _ { 2 } } \vec { F } \cdot d \vec { r } where C2 is given by r(t)=0.1sinti+2j+(1+0.1cost)k,0t2π\vec { r } ( t ) = 0.1 \sin t \vec { i } + 2 \vec { j } + ( 1 + 0.1 \cos t ) \vec { k } , 0 \leq t \leq 2 \pi (c) C3Fdr\int _ { C _ { 3 } } \vec { F } \cdot d \vec { r } where C3 is given by r(t)=(1+0.1cost)i+(2+0.1sint)j+k,0t2π\vec { r } ( t ) = ( 1 + 0.1 \cos t ) \vec { i } + ( 2 + 0.1 \sin t ) \vec { j } + \vec { k } , \quad 0 \leq t \leq 2 \pi


Definitions:

Apartments

Living spaces within a building or complex, typically rented, that provide residential accommodation.

Equilibrium Price

The market price at which the quantity of goods supplied is equal to the quantity of goods demanded.

Nonprice Rationing

The allocation of goods or services using criteria other than price, such as waiting lists or lotteries.

Ration Coupons

Tokens or certificates that allow the holder to purchase a certain amount of a specific product, typically used during shortages or in a controlled economy.

Related Questions