Examlex

Solved

Let F=x3i+(x+sin3y)j\vec { F } = x ^ { 3 } \vec { i } + \left( x + \sin ^ { 3 } y \right) \vec { j }

question 7

Essay

Let F=x3i+(x+sin3y)j\vec { F } = x ^ { 3 } \vec { i } + \left( x + \sin ^ { 3 } y \right) \vec { j } (a)Find the line integral C1Fdr\int _ { C _ { 1 } } \vec { F } \cdot d \vec { r } , where C1 is the line from (0, 0)to ( π\pi , 0).
(b)Evaluate the double integral R1dA\int _ { R } 1 d A where R is the region enclosed by the curve y = sin x and the x-axis for 0 \le x \le π\pi .What is the geometric meaning of this integral?
(c)Use Green's Theorem and the result of part (a)to find c2Fdr\int _ { c _ { 2 } } \vec { F } \cdot d \vec { r } where C2 is the path from (0, 0)to ( π\pi , 0)along the curve y = sin x.


Definitions:

Related Questions