Examlex

Solved

SCENARIO 13-8
a Financial Analyst Wanted to Examine the Relationship

question 25

True/False

SCENARIO 13-8
A financial analyst wanted to examine the relationship between salary (in $1,000) and 2 variables: age (X1 = Age) and experience in the field (X2 = Exper).He took a sample of 20 employees and obtained the following Microsoft Excel output:  Regression Statistics  Multiple R 0.8535 R Square 0.7284 Adjusted R Square 0.6964 Standard Error 10.5630 Observations 20 ANOYA df SS  MS  F  Siqnificonce F  Regression 25086.57642543.288222.79410.0000 Residual 171896.8050111.5768 Total 196983.3814 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 1.57409.27230.16980.867217.988821.1368 Age 1.30450.19566.66780.00000.89171.7173 Exper 0.14780.19440.76040.45740.55800.2624\begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.8535 \\\text { R Square } & 0.7284 \\\text { Adjusted R Square } & 0.6964 \\\text { Standard Error } & 10.5630 \\\text { Observations } & 20 \\\hline\end{array}\\\\\text { ANOYA }\\\begin{array} { l r c c c c } & d f & \text { SS } & \text { MS } & \text { F } & \text { Siqnificonce F } \\\hline \text { Regression } & 2 & 5086.5764 & 2543.2882 & 22.7941 & 0.0000 \\\text { Residual } & 17 & 1896.8050 & 111.5768 & & \\\text { Total } & 19 & 6983.3814 & & & \\\hline\end{array}\\\\\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 1.5740 & 9.2723 & 0.1698 & 0.8672 & - 17.9888 & 21.1368 \\\text { Age } & 1.3045 & 0.1956 & 6.6678 & 0.0000 & 0.8917 & 1.7173 \\\text { Exper } & - 0.1478 & 0.1944 & - 0.7604 & 0.4574 & - 0.5580 & 0.2624 \\\hline\end{array}\end{array}
-Referring to SCENARIO 13-8, the analyst wants to use a t test to test for the significance of the coefficient of X2.At a level of significance of 0.01, the department head would decide that β\beta 2 \neq 0 .


Definitions:

Model Appropriate

Refers to the suitability of a statistical or mathematical model in accurately representing a real-world situation for analytical purposes.

Drop Height

The vertical distance through which an object is dropped or falls, often used in experiments to measure impact or velocity.

Bounce Height

The maximum height reached by an object after being dropped or thrown and rebounding off a surface.

Standard Deviation

A statistic that quantifies the dispersion or variability of a set of data points.

Related Questions