Examlex

Solved

SCENARIO 13-11
a Weight-Loss Clinic Wants to Use Regression Analysis Y=β0+β1X1+β2X2+β3X1X2+εY = \beta _ { 0 } + \beta _ { 1 } X _ { 1 } + \beta _ { 2 } X _ { 2 } + \beta _ { 3 } X _ { 1 } X _ { 2 } + \varepsilon

question 65

Multiple Choice

SCENARIO 13-11
A weight-loss clinic wants to use regression analysis to build a model for weight loss of a client (measured in pounds) .Two variables thought to affect weight loss are client's length of time on the weight-loss program and time of session.These variables are described below:
Y = Weight loss (in pounds)
X1 = Length of time in weight-loss program (in months)
X2 = 1 if morning session, 0 if not
Data for 25 clients on a weight-loss program at the clinic were collected and used to fit the interaction
model: Y=β0+β1X1+β2X2+β3X1X2+εY = \beta _ { 0 } + \beta _ { 1 } X _ { 1 } + \beta _ { 2 } X _ { 2 } + \beta _ { 3 } X _ { 1 } X _ { 2 } + \varepsilon Output from Microsoft Excel follows:  Regression Statistics  Multiple R 0.7308 R Square 0.5341 Adjusted R Square 0.4675 Standard Error 43.3275 Observations 25\begin{array}{lr}{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7308 \\\text { R Square } & 0.5341 \\\text { Adjusted R Square } & 0.4675 \\\text { Standard Error } & 43.3275 \\\text { Observations } & 25\\\hline\end{array}

 ANOVA \text { ANOVA }
 df  SS MSF Significance F Regression 345194.066115064.68878.02480.0009 Residual 2139422.65421877.2692 Total 2484616.7203\begin{array}{lrrrrr}\hline&\text { df } & \text { SS }&M S &F & \text { Significance } F\\\hline\text { Regression } & 3 & 45194.0661 & 15064.6887 & 8.0248 & 0.0009 \\\text { Residual } & 21 & 39422.6542 & 1877.2692 & & \\\text { Total } & 24 & 84616.7203 & &\\\hline \end{array}


 Coefficients  Standard Error  t Stat  P-value  Lower 99%  Upper 99%  Intercept 20.729822.37100.92660.364684.070242.6106 Length 7.24721.49924.83400.00013.002411.4919 Morn 90.198140.23362.24190.035923.7176204.1138 Length x Morn 5.10243.35111.52260.142814.59054.3857\begin{array}{lrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 99\% } & \text { Upper 99\% } \\\hline \text { Intercept } & -20.7298 & 22.3710 & -0.9266 & 0.3646 & -84.0702 & 42.6106 \\\text { Length } & 7.2472 & 1.4992 & 4.8340 & 0.0001 & 3.0024 & 11.4919 \\\text { Morn } & 90.1981 & 40.2336 & 2.2419 & 0.0359 & -23.7176 & 204.1138 \\\text { Length x Morn } & -5.1024 & 3.3511 & -1.5226 & 0.1428 & -14.5905 & 4.3857 \\\hline\end{array}

-Referring to SCENARIO 13-11, what is the experimental unit for this analysis?

Understand different pricing strategies and their application across product life cycle stages.
Evaluate the role of price elasticity of demand in pricing strategy.
Appreciate the significance of understanding fixed and variable costs in pricing.
Analyze various pricing tactics and their impact on consumer perception and demand.

Definitions:

Mnemonics

A technique used to improve memory by linking information to visual, auditory, or other memorable cues.

Improve Memory

Techniques or practices intended to enhance the ability to remember information or experiences.

Copula

A word used to link the subject of a sentence to a subject complement, typically a form of the verb “to be.”

Standard Form

A predefined and universally accepted way of presenting mathematical, logical, or scientific data and statements.

Related Questions