Examlex

Solved

SCENARIO 13-4
a Real Estate Builder Wishes to Determine How

question 158

Multiple Choice

SCENARIO 13-4
A real estate builder wishes to determine how house size (House) is influenced by family income (Income) and family size (Size) .House size is measured in hundreds of square feet and income is measured in thousands of dollars.The builder randomly selected 50 families and ran the multiple regression.Partial Microsoft Excel output is provided below:  Regression Statistics  Multiple R 0.8479 R Square 0.7189 Adjusted R Square 0.7069 Standard Error 17.5571 Observations 50\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8479 \\\text { R Square } & 0.7189 \\\text { Adjusted R Square } & 0.7069 \\\text { Standard Error } & 17.5571 \\\text { Observations } & 50\\\hline \end{array}

 ANOVA \text { ANOVA }
df SS MSF Significance F Regression 37043.323618521.66180.0000 Residual 14487.7627308.2503 Total 4951531.0863\begin{array}{lrrrrr} & d f & \text { SS } & {M S} & F & \text { Significance } F \\\hline \text { Regression } & & & 37043.3236 & 18521.6618 & 0.0000 \\\text { Residual } & & 14487.7627 & 308.2503 & \\\text { Total } & & 49 & 51531.0863 & &\end{array}

 Coefficients  Standard Error t Stat  P-value  Intercept 5.51467.22730.76300.4493 Income 0.42620.039210.86680.0000 Size 5.54371.69493.27080.0020\begin{array}{lrrrr}\hline & \text { Coefficients } & \text { Standard Error } &{t \text { Stat }} & \text { P-value } \\\hline \text { Intercept } & -5.5146 & 7.2273 & -0.7630 & 0.4493 \\\text { Income } & 0.4262 & 0.0392 & 10.8668 & 0.0000 \\\text { Size } & 5.5437 & 1.6949 & 3.2708 & 0.0020\\\hline \end{array}

 Also SSR(X1X2) =36400.6326 and SSR(X2X1) =3297.7917\text { Also } \operatorname{SSR}\left(X_{1} \mid X_{2}\right) =36400.6326 \text { and } \operatorname{SSR}\left(X_{2} \mid X_{1}\right) =3297.7917


-Referring to SCENARIO 13-4, which of the following values for the level of significance is the smallest for which at most one explanatory variable is significant individually?


Definitions:

Landscape Genetics

An interdisciplinary field that combines landscape ecology and population genetics to understand how geographical and environmental features affect gene flow and genetic variation.

Spatial Statistics

A subfield of statistics that deals with analyzing spatially referenced data, taking into account the topological, geometric, and geographic properties that might affect the observed measurements.

Landscape Ecology

A discipline that studies the spatial patterns, processes, and effects of landscapes, encompassing the interactions between spatial patterns and ecological processes.

Random Mating

A mating system in which all individuals have an equal chance of mating with each other, with no selection based on genotype or phenotype.

Related Questions