Examlex

Solved

SCENARIO 13-10
You Worked as an Intern at We Always

question 169

Short Answer

SCENARIO 13-10
You worked as an intern at We Always Win Car Insurance Company last summer.You notice that individual car insurance premiums depend very much on the age of the individual and the number of traffic tickets received by the individual.You performed a regression analysis in EXCEL and obtained the following partial information:  Regression Statistics  Multiple R 0.8546 R Square 0.7303 Adjusted R Square 0.6853 Standard Error 226.7502 Observations 15 ANOVA df SS  MS  F  Significance F Regression 2 835284.6500 16.24570.0004 Residual 12616987.8200 Total 2287557.1200 Coefficients  Standard Error t Stat  P-value  Lower 99%  Upper 99%  Intercept 821.2617161.93915.07140.0003326.61241315.9111 Age 1.40612.59880.54110.59849.34446.5321 Tickets 243.440143.24705.62910.0001111.3406375.5396\begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.8546 \\\text { R Square } & 0.7303 \\\text { Adjusted R Square } & 0.6853 \\\text { Standard Error } & 226.7502 \\\text { Observations } & 15 \\\hline\end{array}\\\\\text { ANOVA }\\\begin{array}{lrrrrrr} & d f & & \text { SS } & \text { MS } & \text { F } & \text { Significance } F \\\hline \text { Regression } & & 2 & & \text { 835284.6500 } & 16.2457 & 0.0004 \\\text { Residual } & & 12 & 616987.8200 & & & \\\text { Total } & & & 2287557.1200 & & & \\\hline\end{array}\\\\\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 99\% } & { \text { Upper 99\% } } \\\hline \text { Intercept } & 821.2617 & 161.9391 & 5.0714 & 0.0003 & 326.6124 & 1315.9111 \\\text { Age } & - 1.4061 & 2.5988 & - 0.5411 & 0.5984 & - 9.3444 & 6.5321 \\\text { Tickets } & 243.4401 & 43.2470 & 5.6291 & 0.0001 & 111.3406 & 375.5396 \\\hline\end{array}\end{array}
-Referring to SCENARIO 13-10, the residual mean squares (MSE) that are missing in theANOVA table should be .


Definitions:

Geometric Average Return

The average rate of return per period on an investment, calculated geometrically to account for compounding effects.

Arithmetic Average Return

The sum of all returns in a series divided by the number of returns, used to calculate the average performance of an investment over time.

Complete Portfolio

A combination of a risk-free asset and one or more risky assets, structured to meet the investor's risk-return objectives.

Risk-Free Asset

An asset which is assumed to have no risk of financial loss and typically refers to government bonds or bills.

Related Questions