Examlex

Solved

SCENARIO 13-11
a Weight-Loss Clinic Wants to Use Regression Analysis Y=β0+β1X1+β2X2+β3X1X2+εY = \beta _ { 0 } + \beta _ { 1 } X _ { 1 } + \beta _ { 2 } X _ { 2 } + \beta _ { 3 } X _ { 1 } X _ { 2 } + \varepsilon

question 215

Multiple Choice

SCENARIO 13-11
A weight-loss clinic wants to use regression analysis to build a model for weight loss of a client (measured in pounds) .Two variables thought to affect weight loss are client's length of time on the weight-loss program and time of session.These variables are described below:
Y = Weight loss (in pounds)
X1 = Length of time in weight-loss program (in months)
X2 = 1 if morning session, 0 if not
Data for 25 clients on a weight-loss program at the clinic were collected and used to fit the interaction
model: Y=β0+β1X1+β2X2+β3X1X2+εY = \beta _ { 0 } + \beta _ { 1 } X _ { 1 } + \beta _ { 2 } X _ { 2 } + \beta _ { 3 } X _ { 1 } X _ { 2 } + \varepsilon Output from Microsoft Excel follows:  Regression Statistics  Multiple R 0.7308 R Square 0.5341 Adjusted R Square 0.4675 Standard Error 43.3275 Observations 25\begin{array}{lr}{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7308 \\\text { R Square } & 0.5341 \\\text { Adjusted R Square } & 0.4675 \\\text { Standard Error } & 43.3275 \\\text { Observations } & 25\\\hline\end{array}

 ANOVA \text { ANOVA }
 df  SS MSF Significance F Regression 345194.066115064.68878.02480.0009 Residual 2139422.65421877.2692 Total 2484616.7203\begin{array}{lrrrrr}\hline&\text { df } & \text { SS }&M S &F & \text { Significance } F\\\hline\text { Regression } & 3 & 45194.0661 & 15064.6887 & 8.0248 & 0.0009 \\\text { Residual } & 21 & 39422.6542 & 1877.2692 & & \\\text { Total } & 24 & 84616.7203 & &\\\hline \end{array}


 Coefficients  Standard Error  t Stat  P-value  Lower 99%  Upper 99%  Intercept 20.729822.37100.92660.364684.070242.6106 Length 7.24721.49924.83400.00013.002411.4919 Morn 90.198140.23362.24190.035923.7176204.1138 Length x Morn 5.10243.35111.52260.142814.59054.3857\begin{array}{lrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 99\% } & \text { Upper 99\% } \\\hline \text { Intercept } & -20.7298 & 22.3710 & -0.9266 & 0.3646 & -84.0702 & 42.6106 \\\text { Length } & 7.2472 & 1.4992 & 4.8340 & 0.0001 & 3.0024 & 11.4919 \\\text { Morn } & 90.1981 & 40.2336 & 2.2419 & 0.0359 & -23.7176 & 204.1138 \\\text { Length x Morn } & -5.1024 & 3.3511 & -1.5226 & 0.1428 & -14.5905 & 4.3857 \\\hline\end{array}

-Referring to SCENARIO 13-11, in terms of the β\beta s in the model, give the mean change in weight loss (Y) for every 1 month increase in time on the program (X1) when not attending the morning session.


Definitions:

Appeal to Reason

A call for logical and rational deliberation as opposed to emotional or biased judgments.

New Feminism

A new aspect of the women’s rights movement that arose in the early part of the twentieth century. New feminism added a focus on individual and sexual freedom to the movement and introduced the word “feminism” into American life.

Historical Significance

The importance ascribed to an event, object, or person in history, based on their impact on subsequent events or developments.

Fordism

A system of mass production that combines manufacturing with technological innovations to produce large quantities of standardized products, famously pioneered by Henry Ford.

Related Questions