Examlex

Solved

SCENARIO 12-12
the Manager of the Purchasing Department of a Large

question 90

Short Answer

SCENARIO 12-12
The manager of the purchasing department of a large saving and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan
application.Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded.Below is the regression output:  Regression Statistics  Multiple R 0.9447 R Square 0.8924 Adjusted R 0.8886 Square  Standard 0.3342 Error  Observations 30 ANOVA  df  SS  MS  F  Significance F Regression 125.943825.9438232.22004.3946E15 Residual 283.12820.1117 Total 2929.072 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 0.40240.12363.25590.00300.14920.6555 Applications 0.01260.000815.23880.00000.01090.0143 Recorded \begin{array}{l}\begin{array} { l r } \hline { \text { Regression Statistics } } \\\hline \text { Multiple R } & 0.9447 \\\text { R Square } & 0.8924 \\\text { Adjusted R } & 0.8886 \\\text { Square } & \\\text { Standard } & 0.3342 \\\text { Error } & \\\text { Observations } & 30 \\\hline\end{array}\\\text { ANOVA }\\\begin{array} { l r r r r r } \hline & { \text { df } } & { \text { SS } } & { \text { MS } } & \text { F } & \text { Significance } F \\\hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\\text { Residual } & 28 & 3.1282 & 0.1117 & & \\\text { Total } & 29 & 29.072 & & & \\\hline\end{array}\\\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\\text { Applications } & 0.0126 & 0.0008 & 15.2388 & 0.0000 & 0.0109 & 0.0143 \\\text { Recorded } & & & & & & \\\hline\end{array}\end{array} 12-46 Simple Linear Regression  SCENARIO 12-12 The manager of the purchasing department of a large saving and loan organization would like to develop a model to predict the amount of time (measured in hours) it takes to record a loan application.Data are collected from a sample of 30 days, and the number of applications recorded and completion time in hours is recorded.Below is the regression output:  \begin{array}{l} \begin{array} { l r }  \hline  { \text { Regression Statistics } } \\ \hline \text { Multiple R } & 0.9447 \\ \text { R Square } & 0.8924 \\ \text { Adjusted R } & 0.8886 \\ \text { Square } & \\ \text { Standard } & 0.3342 \\ \text { Error } & \\ \text { Observations } & 30 \\ \hline \end{array}\\ \text { ANOVA }\\ \begin{array} { l r r r r r }  \hline & { \text { df } } & { \text { SS } } & { \text { MS } } & \text { F } & \text { Significance } F \\ \hline \text { Regression } & 1 & 25.9438 & 25.9438 & 232.2200 & 4.3946 \mathrm { E } - 15 \\ \text { Residual } & 28 & 3.1282 & 0.1117 & & \\ \text { Total } & 29 & 29.072 & & & \\ \hline \end{array}\\ \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 0.4024 & 0.1236 & 3.2559 & 0.0030 & 0.1492 & 0.6555 \\ \text { Applications } & 0.0126 & 0.0008 & 15.2388 & 0.0000 & 0.0109 & 0.0143 \\ \text { Recorded } & & & & & & \\ \hline \end{array} \end{array}  12-46 Simple Linear Regression   Simple Linear Regression 12-47 -Referring to Scenario 12-12, to test the claim that the mean amount of time depends positively on the number of loan applications recorded against the null hypothesis that the mean amount of time does not depend linearly on the number of invoices processed, the p-value of the test statistic is . Simple Linear Regression 12-47
-Referring to Scenario 12-12, to test the claim that the mean amount of time depends positively on the number of loan applications recorded against the null hypothesis that the mean amount of time does not depend linearly on the number of invoices processed, the p-value of the test statistic is .


Definitions:

Undiscounted Sum

The total of all future cash flows associated with an investment or project without adjusting them for their present value.

Discounted

The method of calculating the current value of a future sum of money or series of cash flows using a particular return rate.

Interest Expense

The financial charges a company bears for loaned money across a time frame.

Note Payable-National Bank

A written promise to pay a specific sum of money, borrowed from a national bank, at a future date.

Related Questions