Examlex

Solved

Determine Whether {V1, V2, V3} Is a Basis For , And

question 46

Multiple Choice

Determine whether {v1, v2, v3} is a basis for
b1=[11],b2=[11],x=[35]\mathbf { b } _ { 1 } = \left[ \begin{array} { l } 1 \\ 1 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 1 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } 3 \\ - 5 \end{array} \right] , and B={b1,b2}B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}
 Determine whether {v1, v2, v3} is a basis for   \mathbf { b } _ { 1 } = \left[ \begin{array} { l } 1 \\ 1 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 1 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } 3 \\ - 5 \end{array} \right] , and  B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}      - \mathbf { b } _ { 1 } = \left[ \begin{array} { r } 3 \\ 2 \\ - 3 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 5 \\ - 3 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } - 16 \\ 2 \\ 8 \end{array} \right] , and  B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}  A)   \left[ \begin{array} { l } - 2 \\ - 3 \end{array} \right]   B)   \left[ \begin{array} { r } - 128 \\ - 2 \\ - 32 \end{array} \right]   C)   \left[ \begin{array} { l } - 2 \\ - 2 \end{array} \right]   D)    \left[ \begin{array} { r } - 38 \\ - 38 \\ 46 \end{array} \right]


- b1=[323],b2=[531],x=[1628]\mathbf { b } _ { 1 } = \left[ \begin{array} { r } 3 \\ 2 \\ - 3 \end{array} \right] , \mathbf { b } _ { 2 } = \left[ \begin{array} { r } 5 \\ - 3 \\ - 1 \end{array} \right] , \mathbf { x } = \left[ \begin{array} { r } - 16 \\ 2 \\ 8 \end{array} \right] , and B={b1,b2}B = \left\{ \mathbf { b } _ { 1 } , \mathbf { b } _ { 2 } \right\}


Definitions:

Naturally Occurring

Events or phenomena that happen without human intervention or manipulation, often observed in research to understand natural behaviors or processes.

Intrinsic Case Study

A case study where the interest is in the case itself because of its unique or peculiar nature, rather than to generalize or compare.

Related Questions