Examlex

Solved

In the Multiple Regression Model with Two Explanatory Variables Yi=β0+β1X1i+β2X2i+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + u _ { i }

question 25

Essay

In the multiple regression model with two explanatory variables Yi=β0+β1X1i+β2X2i+uiY _ { i } = \beta _ { 0 } + \beta _ { 1 } X _ { 1 i } + \beta _ { 2 } X _ { 2 i } + u _ { i } the OLS estimators for the three parameters are as follows (small letters refer to deviations from means as in zi=ZiZˉz _ { i } = Z _ { i } - \bar { Z } ):
β^0=Yˉβ^1Xˉ1β^2Xˉ2β^1=i=1nyix1ii=1nx2i2i=1nyix2ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2β^2=i=1nyix2ii=1nx1i2i=1nyix1ii=1nx1ix2ii=1nx1i2i=1nx2i2(i=1nx1ix2i)2\begin{array} { c } \hat { \beta } _ { 0 } = \bar { Y } - \hat { \beta } _ { 1 } \bar { X } _ { 1 } - \hat { \beta } _ { 2 } \bar { X } _ { 2 } \\\hat { \beta } _ { 1 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } } \\\\\hat { \beta } _ { 2 } = \frac { \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } - \sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } } { \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } - \left( \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } \right) ^ { 2 } }\end{array} You have collected data for 104 countries of the world from the Penn World Tables and want to estimate the effect of the population growth rate (X1i)\left( X _ { 1 i } \right) and the saving rate (X2i)\left( X _ { 2 i } \right) (average investment share of GDP from 1980 to 1990) on GDP per worker (relative to the U.S.) in 1990. The various sums needed to calculate the OLS estimates are given below: i=1nYi=33.33;i=1nX1i=2.025;i=1nX2i=17.313i=1nyi2=8.3103;i=1nx1i2=.0122;i=1nx2i2=0.6422\begin{array} { l } \sum _ { i = 1 } ^ { n } Y _ { i } = 33.33 ; \sum _ { i = 1 } ^ { n } X _ { 1 i } = 2.025 ; \sum _ { i = 1 } ^ { n } X _ { 2 i } = 17.313 \\\\\sum _ { i = 1 } ^ { n } y _ { i } ^ { 2 } = 8.3103 ; \sum _ { i = 1 } ^ { n } x _ { 1 i } ^ { 2 } = .0122 ; \sum _ { i = 1 } ^ { n } x _ { 2 i } ^ { 2 } = 0.6422\end{array} i=1nyix1i=0.2304;i=1nyix2i=1.5676;i=1nx1ix2i=0.0520\sum _ { i = 1 } ^ { n } y _ { i } x _ { 1 i } = - 0.2304 ; \sum _ { i = 1 } ^ { n } y _ { i } x _ { 2 i } = 1.5676 ; \sum _ { i = 1 } ^ { n } x _ { 1 i } x _ { 2 i } = - 0.0520 (a)What are your expected signs for the regression coefficient? Calculate the coefficients
and see if their signs correspond to your intuition.


Definitions:

Accounting Information

Financial data and reports that provide insights into the financial health of a business, aiding in decision-making and financial management.

Credit Risk

The possibility that a borrower may not repay a loan or meet contractual obligations, leading to financial loss for the lender.

Financial Information

Data relating to the monetary performance, position, and cash flows of an organization, useful for making economic decisions.

Organization

Structured group of people working together to achieve common goals.

Related Questions