Examlex

Solved

In the Case When the Errors Are Homoskedastic and Normally β^\hat { \boldsymbol { \beta } }

question 17

Short Answer

In the case when the errors are homoskedastic and normally distributed, conditional on X, then a. β^\hat { \boldsymbol { \beta } } is distributed N(β,Σβ^X)N \left( \boldsymbol { \beta } , \Sigma _ { \hat { \beta } \mid X } \right) , where Σβ^X=σu2I(k+1)\Sigma _ { \hat { \beta } \mid X } = \sigma _ { u } ^ { 2 } \boldsymbol { I } _ { ( \mathrm { k } + 1 ) } .
b. β^\hat { \boldsymbol { \beta } } is distributed N(β,Σβ^)\mathrm { N } \left( \boldsymbol { \beta } , \Sigma _ { \hat { \beta } } \right) , where Σβ^=Σn(β˙β)/n=QX1ΣVQX1/n\Sigma _ { \hat { \beta } } = \Sigma _ { \sqrt { n } ( \dot { \beta } - \beta ) } / n = \boldsymbol { Q } _ { X } ^ { - 1 } \Sigma _ { V } \boldsymbol { Q } _ { X } ^ { - 1 } / n .
c. β^\hat { \beta } is distributed N(β,Σβ˙X)N \left( \boldsymbol { \beta } , \Sigma _ { \dot { \beta } \mid X } \right) , where Σβ˙X=σu2(XX)1\Sigma _ { \dot { \beta } \mid X } = \sigma _ { u } ^ { 2 } ( \boldsymbol { X } \boldsymbol { X } ) ^ { - 1 } .
d. U^=PXY\hat { U } = \boldsymbol { P } _ { \boldsymbol { X } } \boldsymbol { Y } where PX=X(XX)1X\boldsymbol { P } _ { \boldsymbol { X } } = \boldsymbol { X } \left( \boldsymbol { X } ^ { \prime } \boldsymbol { X } \right) ^ { - 1 } \boldsymbol { X } ^ { \prime } .


Definitions:

Machined

Processed using a milling, turning, or drilling machine to achieve desired dimensions and finishes on a work piece.

Service Facilities

Locations or establishments where maintenance, repair, and other support services are provided for vehicles or equipment, ensuring operational efficiency and safety.

Coefficient of Friction

A numerical value that represents the ratio of the force of friction between two objects to the force pressing them together.

Friction Facings

The material on the surface of clutch plates and brake pads that creates the necessary friction for operation.

Related Questions