Examlex

Solved

The Complete Second-Order Model Was Fit To n=25n = 25 Data Points

question 116

Essay

The complete second-order model E(y)=β0+β1x1+β2x2+β3x1x2+β4x12+β5x22E ( y ) = \beta _ { 0 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 1 } x _ { 2 } + \beta _ { 4 } x _ { 1 } ^ { 2 } + \beta _ { 5 } x _ { 2 } ^ { 2 } was fit to n=25n = 25 data points. The printout is shown below.
ANOVA
df SS  MS F Significance F Regression 522812.465384562.49307756487.986.12671E39 Residual 191.5346161870.080769273 Total 2422814\begin{array} { l l l l l l } & d f & \text { SS } & \text { MS } & F & \text { Significance } F \\\hline \text { Regression } & 5 & 22812.46538 & 4562.493077 & 56487.98 & 6.12671 \mathrm { E } - 39 \\\text { Residual } & 19 & 1.534616187 & 0.080769273 & & \\\text { Total } & 24 & 22814 & & & \\\hline\end{array}

 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 0.2022743070.3776038820.5356785690.5983960640.992608560.588059946X10.579564910.1846975373.1379135780.0054168890.1929884020.966141418X20.5029839370.1309401233.8413278150.0011008550.2289230240.777044849XlX21.9761108070.02201104389.778153571.92982E261.930041152.022180464X120.0268252920.0253509941.0581554540.3032529050.0798855480.026234964X20.0129443580.0150889780.8578684460.4016574920.0186372450.044525961\begin{array}{lllllll} & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & -0.202274307 & 0.377603882 & -0.535678569 & 0.598396064 & -0.99260856 & 0.588059946 \\\mathrm{X} 1 & 0.57956491 & 0.184697537 & 3.137913578 & 0.005416889 & 0.192988402 & 0.966141418 \\\mathrm{X} 2 & 0.502983937 & 0.130940123 & 3.841327815 & 0.001100855 & 0.228923024 & 0.777044849 \\\mathrm{Xl}^{*} \mathrm{X} 2 & 1.976110807 & 0.022011043 & 89.77815357 & 1.92982 \mathrm{E}-26 & 1.93004115 & 2.022180464 \\\mathrm{X} 1^{\wedge} 2 & -0.026825292 & 0.025350994 & -1.058155454 & 0.303252905 & -0.079885548 & 0.026234964 \\\mathrm{X}^{\wedge} 2 & 0.012944358 & 0.015088978 & 0.857868446 & 0.401657492 & -0.018637245 & 0.044525961\end{array}

a. Write the complete second-order model for the data.
b. Is there sufficient evidence to indicate that at least one of the parameters β1,β2,β3,β4\beta _ { 1 } , \beta _ { 2 } , \beta _ { 3 } , \beta _ { 4 } , and β5\beta 5 is nonzero? Test using α=.05\alpha = .05 .
c. Test H0:β3=0H _ { 0 } : \beta _ { 3 } = 0 against Ha:β30H _ { \mathrm { a } } : \beta _ { 3 } \neq 0 . Use α=.01\alpha = .01 .
d. Test H0:β4=0H _ { 0 } : \beta _ { 4 } = 0 against Ha:β40H _ { \mathrm { a } } : \beta _ { 4 } \neq 0 . Use α=.01\alpha = .01 .

Identify the differences and similarities in cell division among different organisms and cell types.
Understand the concept of virtualization in computing and its purposes.
Identify the characteristics and structures of different network topologies.
Recognize security measures implemented in networked environments.

Definitions:

Wage Rate

The standard amount of pay given for work performed, often expressed as an amount per hour, day, or other unit of time.

Profit-maximizing

The process or strategy of adjusting production and sales to achieve the highest possible profit under given market conditions.

Product Price

The monetary cost consumers are required to pay to acquire a good or service.

Market Wage Rate

The prevailing rate of pay for a particular job in a specific market or geographical area.

Related Questions