Examlex

Solved

SCENARIO 17-2 One of the Most Common Questions of Prospective (Y)( Y )

question 338

Multiple Choice

SCENARIO 17-2 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars (Y) ( Y ) . To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit (X1) \left( X _ { 1 } \right) , the amount of insulation in inches (X2) \left( X _ { 2 } \right) , the number of windows in the house (X3) \left( X _ { 3 } \right) , and the age of the furnace in years (X4) \left( X _ { 4 } \right) . Given below are the EXCEL outputs of two regression models.

Model 1
 Regression Statistics  R Square 0.8080 Adjusted R Square 0.7568 Observations 20\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { R Square } & 0.8080 \\\text { Adjusted R Square } & 0.7568 \\\text { Observations } & 20 \\\hline\end{array}  ANOVA \text { ANOVA }
df SS MSF Significance F Regression 4169503.424142375.8615.78740.0000 Residual 1540262.32592684.155 Total 19209765.75\begin{array}{lrrrrrr}\hline & d f & & {\text { SS }} & M S & F & \text { Significance } F \\\hline \text { Regression } && 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\\text { Residual } && 15 & 40262.3259 & 2684.155 & & \\\text { Total } && 19 & 209765.75 & & & \\\hline\end{array}

 Coefficients  Standard Error  t Stat  P-value  Lower 90.0%  Upper 90.0%  Intereept 421.427777.86145.41250.0000284.9327557.9227X1 (Temperature)  4.50980.81295.54760.00005.93493.0847X2 (Insulation)  14.90295.05082.95050.009923.75736.0485X3 (Windows)  0.21514.86750.04420.96538.31818.7484X4 (Furnace Age)  6.37804.10261.55460.14080.814013.5702\begin{array}{lrrrrrrr}\hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\\hline \text { Intereept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\\mathrm{X}_{1} \text { (Temperature) } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\\mathrm{X}_{2} \text { (Insulation) } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\\mathrm{X}_{3} \text { (Windows) } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\\mathrm{X}_{4} \text { (Furnace Age) } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702\end{array}

 Model 2\text { Model } 2
 Regression Statistics  R Square 0.7768 Adjusted R Square 0.7506 Observations 20\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { R Square } & 0.7768 \\\text { Adjusted R Square } & 0.7506 \\\text { Observations } & 20 \\\hline\end{array}

 ANOVA \text { ANOVA }
 SCENARIO 17-2 One of the most common questions of prospective house buyers pertains to the cost of heating in dollars  ( Y )  . To provide its customers with information on that matter, a large real estate firm used the following 4 variables to predict heating costs: the daily minimum outside temperature in degrees of Fahrenheit  \left( X _ { 1 } \right)  , the amount of insulation in inches  \left( X _ { 2 } \right)  , the number of windows in the house  \left( X _ { 3 } \right)  , and the age of the furnace in years  \left( X _ { 4 } \right)  . Given below are the EXCEL outputs of two regression models.  Model 1  \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { R Square } & 0.8080 \\ \text { Adjusted R Square } & 0.7568 \\ \text { Observations } & 20 \\ \hline \end{array}   \text { ANOVA }   \begin{array}{lrrrrrr} \hline & d f & & {\text { SS }} & M S & F & \text { Significance } F \\ \hline \text { Regression } && 4 & 169503.4241 & 42375.86 & 15.7874 & 0.0000 \\ \text { Residual } && 15 & 40262.3259 & 2684.155 & & \\ \text { Total } && 19 & 209765.75 & & & \\ \hline \end{array}    \begin{array}{lrrrrrrr} \hline & \text { Coefficients } & \text { Standard Error } &{\text { t Stat }} & \text { P-value } & \text { Lower 90.0\% } & \text { Upper 90.0\% } \\ \hline \text { Intereept } & 421.4277 & 77.8614 & 5.4125 & 0.0000 & 284.9327 & 557.9227 \\ \mathrm{X}_{1} \text { (Temperature)  } & -4.5098 & 0.8129 & -5.5476 & 0.0000 & -5.9349 & -3.0847 \\ \mathrm{X}_{2} \text { (Insulation)  } & -14.9029 & 5.0508 & -2.9505 & 0.0099 & -23.7573 & -6.0485 \\ \mathrm{X}_{3} \text { (Windows)  } & 0.2151 & 4.8675 & 0.0442 & 0.9653 & -8.3181 & 8.7484 \\ \mathrm{X}_{4} \text { (Furnace Age)  } & 6.3780 & 4.1026 & 1.5546 & 0.1408 & -0.8140 & 13.5702 \end{array}    \text { Model } 2    \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { R Square } & 0.7768 \\ \text { Adjusted R Square } & 0.7506 \\ \text { Observations } & 20 \\ \hline \end{array}    \text { ANOVA }      \begin{array}{lrrllrr} \hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\ \mathrm{X}_{1} \text { (Temperature)  } & -5.1103 & 0.6951 & -7.3515 & 0.0000 & -6.5769 & -3.6437 \\ \mathrm{X}_{2} \text { (Insulation)  } & -14.7195 & 4.8864 & -3.0123 & 0.0078 & -25.0290 & -4.4099 \end{array}  -Referring to Scenario 17-2, what can we say about Model 1? A)  The model explains 77.7% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 75.1% of the sample variability of heating Costs. B)  The model explains 75.1% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 77.7% of the sample variability of heating Costs. C)  The model explains 80.8% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 75.7% of the sample variability of heating Costs. D)  The model explains 75.7% of the sample variability of heating costs; after correcting for the degrees of freedom, the model explains 80.8% of the sample variability of heating Costs.

 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 489.322743.982611.12530.0000396.5273582.1180X1 (Temperature)  5.11030.69517.35150.00006.57693.6437X2 (Insulation)  14.71954.88643.01230.007825.02904.4099\begin{array}{lrrllrr}\hline & \text { Coefficients } & \text { Standard Error } & t \text { Stat } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 489.3227 & 43.9826 & 11.1253 & 0.0000 & 396.5273 & 582.1180 \\\mathrm{X}_{1} \text { (Temperature) } & -5.1103 & 0.6951 & -7.3515 & 0.0000 & -6.5769 & -3.6437 \\\mathrm{X}_{2} \text { (Insulation) } & -14.7195 & 4.8864 & -3.0123 & 0.0078 & -25.0290 & -4.4099\end{array}
-Referring to Scenario 17-2, what can we say about Model 1?


Definitions:

Antihistamine

A type of medication that counteracts the effects of histamine, improving allergy symptoms.

Inflammation

A biological response to harmful stimuli such as pathogens, damaged cells, or irritants, characterized by redness, swelling, heat, pain, and often loss of function.

Immunoglobulin

Proteins in the blood plasma produced by B cells that act as antibodies to help fight infections.

Related Questions