Examlex

Solved

SCENARIO 17-10 Given Below Are Results from the Regression Analysis 1=1 =

question 382

Short Answer

SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1=1 = married, 0=0 = otherwise), a dummy variable for head of household (Head: 1=1 = yes, 0=0 = no) and a dummy variable for management position (Manager: 1=1 = yes, 0=0 = no). We shall call this Model 1. The coefficient of partial determination ( Ry2R _ { \mathrm { y } } ^ { 2 } (All raiables excopt jj ) ) of each of the 6 predictors are, respectively, 0.28070.2807 , 0.0386,0.0317,0.0141,0.09580.0386,0.0317,0.0141,0.0958 , and 0.12010.1201 .

 Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } & \\\text { Observations } & 40 \\\hline\end{array}
 ANOVA \text { ANOVA }
 SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married:  1 =  married,  0 =  otherwise), a dummy variable for head of household (Head:  1 =  yes,  0 =  no) and a dummy variable for management position (Manager:  1 =  yes,  0 =  no). We shall call this Model 1. The coefficient of partial determination (  R _ { \mathrm { y } } ^ { 2 }  (All raiables excopt  j  ) ) of each of the 6 predictors are, respectively,  0.2807 ,  0.0386,0.0317,0.0141,0.0958 , and  0.1201 .   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adjusted R } & 0.4030 \\ \text { Square } & \\ \text { Standard } & 18.4861 \\ \text { Error } & \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{l} \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\ \hline \end{array} \end{array}  -Referring to Scenario 17-10 Model 1, what are the lower and upper limits of the 95% confidence interval estimate for the effect of a one year increase in education received on the mean number of weeks a worker is unemployed due to a layoff after taking into consideration the effect of all the other independent variables?


 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\\text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\\text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\\text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\\hline\end{array}\end{array}
-Referring to Scenario 17-10 Model 1, what are the lower and upper limits of the 95%
confidence interval estimate for the effect of a one year increase in education received on the
mean number of weeks a worker is unemployed due to a layoff after taking into consideration the
effect of all the other independent variables?

Understand the significance of economic profits and losses in short-run and long-run equilibrium.
Discern the factors leading to the condition of zero economic profits in the long run for firms in perfect competition.
Illustrate the relationship between market conditions and the operations decisions of firms in the short run versus the long run.
Define key terms related to perfect competition, such as break-even point, shutdown point, and perfect knowledge.

Definitions:

Fixed Expenses

Costs that do not change with the level of production or sales, such as rent, salaries, and insurance.

Beet Juice

A liquid extracted from beets, known for its nutritional benefits and potential use in food coloring and health drinks.

Refined Sugar

Sugar that has been processed to remove impurities and is typically found in a granulated form suitable for consumption.

Financial Advantage

The benefit gained in financial terms from a particular action or situation, often measured in terms of profit, savings, or net worth.

Related Questions