Examlex

Solved

SCENARIO 17-10 Given Below Are Results from the Regression Analysis 1=1 =

question 37

True/False

SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1=1 = married, 0=0 = otherwise), a dummy variable for head of household (Head: 1=1 = yes, 0=0 = no) and a dummy variable for management position (Manager: 1=1 = yes, 0=0 = no). We shall call this Model 1. The coefficient of partial determination ( Ry2R _ { \mathrm { y } } ^ { 2 } (All raiables excopt jj ) ) of each of the 6 predictors are, respectively, 0.28070.2807 , 0.0386,0.0317,0.0141,0.09580.0386,0.0317,0.0141,0.0958 , and 0.12010.1201 .

 Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } & \\\text { Observations } & 40 \\\hline\end{array}
 ANOVA \text { ANOVA }
 SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married:  1 =  married,  0 =  otherwise), a dummy variable for head of household (Head:  1 =  yes,  0 =  no) and a dummy variable for management position (Manager:  1 =  yes,  0 =  no). We shall call this Model 1. The coefficient of partial determination (  R _ { \mathrm { y } } ^ { 2 }  (All raiables excopt  j  ) ) of each of the 6 predictors are, respectively,  0.2807 ,  0.0386,0.0317,0.0141,0.0958 , and  0.1201 .   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adjusted R } & 0.4030 \\ \text { Square } & \\ \text { Standard } & 18.4861 \\ \text { Error } & \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{l} \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\ \hline \end{array} \end{array}  -Referring to Scenario 17-10 and using both Model 1 and Model 2, there is insufficient evidence to conclude that the independent variables that are not significant individually are significant as a group in explaining the variation in the dependent variable at a 5% level of significance?


 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\\text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\\text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\\text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\\hline\end{array}\end{array}
-Referring to Scenario 17-10 and using both Model 1 and Model 2, there is
insufficient evidence to conclude that the independent variables that are not significant
individually are significant as a group in explaining the variation in the dependent variable at a
5% level of significance?


Definitions:

Cooties

A fictitious childhood disease, often used as a playful way to describe someone or something as being infected or contaminated.

Personality Development

The pattern of growth and change in an individual’s personality traits and behaviors over the course of their life.

Latency

A period of development in psychoanalytic theory characterized by the temporary subsidence of sexual interests and activities before puberty.

Anal Stage

A phase in Freudian psychosexual development, typically between ages 18 months and 3 years, where the child's focus is on controlling bladder and bowel movements.

Related Questions