Examlex

Solved

SCENARIO 17-10 Given Below Are Results from the Regression Analysis 1=1 =

question 162

True/False

SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married: 1=1 = married, 0=0 = otherwise), a dummy variable for head of household (Head: 1=1 = yes, 0=0 = no) and a dummy variable for management position (Manager: 1=1 = yes, 0=0 = no). We shall call this Model 1. The coefficient of partial determination ( Ry2R _ { \mathrm { y } } ^ { 2 } (All raiables excopt jj ) ) of each of the 6 predictors are, respectively, 0.28070.2807 , 0.0386,0.0317,0.0141,0.09580.0386,0.0317,0.0141,0.0958 , and 0.12010.1201 .

 Regression Statistics  Multiple R 0.7035 R Square 0.4949 Adjusted R 0.4030 Square  Standard 18.4861 Error  Observations 40\begin{array}{lr}\hline{\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.7035 \\\text { R Square } & 0.4949 \\\text { Adjusted R } & 0.4030 \\\text { Square } & \\\text { Standard } & 18.4861 \\\text { Error } & \\\text { Observations } & 40 \\\hline\end{array}
 ANOVA \text { ANOVA }
 SCENARIO 17-10 Given below are results from the regression analysis where the dependent variable is the number of weeks a worker is unemployed due to a layoff (Unemploy) and the independent variables are the age of the worker (Age), the number of years of education received (Edu), the number of years at the previous job (Job Yr), a dummy variable for marital status (Married:  1 =  married,  0 =  otherwise), a dummy variable for head of household (Head:  1 =  yes,  0 =  no) and a dummy variable for management position (Manager:  1 =  yes,  0 =  no). We shall call this Model 1. The coefficient of partial determination (  R _ { \mathrm { y } } ^ { 2 }  (All raiables excopt  j  ) ) of each of the 6 predictors are, respectively,  0.2807 ,  0.0386,0.0317,0.0141,0.0958 , and  0.1201 .   \begin{array}{lr} \hline{\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.7035 \\ \text { R Square } & 0.4949 \\ \text { Adjusted R } & 0.4030 \\ \text { Square } & \\ \text { Standard } & 18.4861 \\ \text { Error } & \\ \text { Observations } & 40 \\ \hline \end{array}    \text { ANOVA }       \begin{array}{l} \begin{array} { l r r r r r r }  \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\ \hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\ \text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\ \text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\ \text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\ \text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\ \text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\ \text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\ \hline \end{array} \end{array}  -Referring to Scenario 17-10 Model 1 Model 1, the null hypothesis  H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } = \beta _ { 4 } = \beta _ { 5 } = \beta _ { 6 } = 0  implies that the number of weeks a worker is unemployed due to a layoff is not affected by any of the explanatory variables.


 Coefficients  Standard Error t Stat  P-value  Lower 95%  Upper 95%  Intercept 32.659523.183021.40880.168314.506779.8257 Age 1.29150.35993.58830.00110.55922.0238 Edu 1.35371.17661.15040.25823.74761.0402 Job Yr 0.61710.59401.03890.30640.59141.8257 Married 5.21897.60680.68610.497420.695010.2571 Head 14.29787.64791.86950.070429.85751.2618 Manager 24.820311.69322.12260.041448.61021.0303\begin{array}{l}\begin{array} { l r r r r r r } \hline & \text { Coefficients } & \text { Standard Error } & { t \text { Stat } } & \text { P-value } & \text { Lower 95\% } & \text { Upper 95\% } \\\hline \text { Intercept } & 32.6595 & 23.18302 & 1.4088 & 0.1683 & - 14.5067 & 79.8257 \\\text { Age } & 1.2915 & 0.3599 & 3.5883 & 0.0011 & 0.5592 & 2.0238 \\\text { Edu } & - 1.3537 & 1.1766 & - 1.1504 & 0.2582 & - 3.7476 & 1.0402 \\\text { Job Yr } & 0.6171 & 0.5940 & 1.0389 & 0.3064 & - 0.5914 & 1.8257 \\\text { Married } & - 5.2189 & 7.6068 & - 0.6861 & 0.4974 & - 20.6950 & 10.2571 \\\text { Head } & - 14.2978 & 7.6479 & - 1.8695 & 0.0704 & - 29.8575 & 1.2618 \\\text { Manager } & - 24.8203 & 11.6932 & - 2.1226 & 0.0414 & - 48.6102 & - 1.0303 \\\hline\end{array}\end{array}
-Referring to Scenario 17-10 Model 1 Model 1, the null hypothesis H0:β1=β2=β3=β4=β5=β6=0H _ { 0 } : \beta _ { 1 } = \beta _ { 2 } = \beta _ { 3 } = \beta _ { 4 } = \beta _ { 5 } = \beta _ { 6 } = 0 implies that the number of weeks a worker is
unemployed due to a layoff is not affected by any of the explanatory variables.


Definitions:

Vertically

Pertains to the orientation or direction that goes from top to bottom or bottom to top, often used to describe the arrangement of hierarchies or layers.

Communication

The act or process of using words, symbols, or actions to express ideas, thoughts, or feelings, and to exchange information between individuals or groups.

Coordination

The organized arrangement of group activities and efforts to ensure a smooth operation or completion of a common task.

Differentiate Labour

The process of distinguishing or creating differences between types of labor based on skills, tasks, or responsibilities.

Related Questions