Examlex

Solved

SCENARIO 14-8 a Financial Analyst Wanted to Examine the Relationship $1,000 \$ 1,000

question 192

Short Answer

SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in $1,000 \$ 1,000 ) and 2 variables: age (X1=Age) \left(X_{1}=\mathrm{Age}\right) and experience in the field (X2= \left(X_{2}=\right. Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output:

 Regression Statistics  Multiple R 0.8535 R Square 0.7284 Adjusted R Square 0.6964 Standard Error 10.5630 Observations 20\begin{array}{lr}\hline {\text { Regression Statistics }} \\\hline \text { Multiple R } & 0.8535 \\\text { R Square } & 0.7284 \\\text { Adjusted R Square } & 0.6964 \\\text { Standard Error } & 10.5630 \\\text { Observations } & 20 \\\hline\end{array}

 ANOVA \text { ANOVA }
 SCENARIO 14-8 A financial analyst wanted to examine the relationship between salary (in   \$ 1,000   ) and 2 variables: age   \left(X_{1}=\mathrm{Age}\right)   and experience in the field   \left(X_{2}=\right.   Exper). He took a sample of 20 employees and obtained the following Microsoft Excel output:   \begin{array}{lr} \hline {\text { Regression Statistics }} \\ \hline \text { Multiple R } & 0.8535 \\ \text { R Square } & 0.7284 \\ \text { Adjusted R Square } & 0.6964 \\ \text { Standard Error } & 10.5630 \\ \text { Observations } & 20 \\ \hline \end{array}    \text { ANOVA }      \begin{array}{lrrrrrr}  & \text { Coefficients } & \text { Standard Error } & {\text { t Stat }} & \text { P-value } & \text { Lower 95\% } &{\text { O5\% }} \\ \hline \text { Intercept } & 1.5740 & 9.2723 & 0.1698 & 0.8672 & -17.9888 & 21.1368 \\ \text { Age } & 1.3045 & 0.1956 & 6.6678 & 0.0000 & 0.8917 & 1.7173 \\ \text { Exper } & -0.1478 & 0.1944 & -0.7604 & 0.4574 & -0.5580 & 0.2624 \\ \hline \end{array}   Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the sum of squares due to the regression for the model that includes only Exper is 125.9848. -Referring to Scenario 14-8, the coefficient of partial determination  r _ { Y 1 \cdot 2 } ^ { 2 }  ⋅ is ____.

 Coefficients  Standard Error  t Stat  P-value  Lower 95%  O5%  Intercept 1.57409.27230.16980.867217.988821.1368 Age 1.30450.19566.66780.00000.89171.7173 Exper 0.14780.19440.76040.45740.55800.2624\begin{array}{lrrrrrr} & \text { Coefficients } & \text { Standard Error } & {\text { t Stat }} & \text { P-value } & \text { Lower 95\% } &{\text { O5\% }} \\\hline \text { Intercept } & 1.5740 & 9.2723 & 0.1698 & 0.8672 & -17.9888 & 21.1368 \\\text { Age } & 1.3045 & 0.1956 & 6.6678 & 0.0000 & 0.8917 & 1.7173 \\\text { Exper } & -0.1478 & 0.1944 & -0.7604 & 0.4574 & -0.5580 & 0.2624 \\\hline\end{array}
Also the sum of squares due to the regression for the model that includes only Age is 5022.0654 while the
sum of squares due to the regression for the model that includes only Exper is 125.9848.
-Referring to Scenario 14-8, the coefficient of partial determination rY122r _ { Y 1 \cdot 2 } ^ { 2 } ⋅ is ____.


Definitions:

Related Questions