Examlex

Solved

A Manufacturer of Boiler Drums Wants to Use Regression to Predict

question 23

Multiple Choice

A manufacturer of boiler drums wants to use regression to predict the number of man-hours needed to erect drums in the future. The manufacturer collected a random sample of 35 boilers and measured the following two variables: MANHRS: y=\quad y = Number of man-hours required to erect the drum
PRESSURE: x=\quad x = Boiler design pressure (pounds per square inch, i.e., psi\mathrm { psi } )
The simple linear model E(y) =β1+β1xE ( y ) = \beta _ { 1 } + \beta _ { 1 } x was fit to the data. A printout for the analysis appears below:
UNWEIGHTED LEAST SQUARES LINEAR REGRESSION OF MANHRS
 PREDICTOR  VARIABLES  COEFFICIENT  STD ERROR  STUDENT’S T  P  CONSTANT 1.880590.583803.220.0028 PRESSURE 0.003210.001632.170.0300\begin{array}{c|c|c|c|c}\text { PREDICTOR } & & & & \\\text { VARIABLES } & \text { COEFFICIENT } & \text { STD ERROR } & \text { STUDENT'S T } & \text { P } \\\hline \text { CONSTANT } & 1.88059 & 0.58380 & 3.22 & 0.0028 \\\text { PRESSURE } & 0.00321 & 0.00163 & 2.17 & 0.0300\end{array}

 R-SQUARED 0.4342 RESID. MEAN SQUARE (MSE)  4.25460 ADJUSTED R-SQUARED 0.4176 STANDARD DEVIATION 2.06267\begin{array} { l l l l } \text { R-SQUARED } & 0.4342 & \text { RESID. MEAN SQUARE (MSE) } & 4.25460 \\ \text { ADJUSTED R-SQUARED } & 0.4176 & \text { STANDARD DEVIATION } & 2.06267 \end{array}

 SOURCE  DF  SS  MS FP REGRESSION 1111.008111.0085.190.0300 RESIDUAL 34144.6564.25160 TOTAL 35255.665\begin{array}{l|r|c|c|c|c}\text { SOURCE } & \text { DF } & {\text { SS }} & \text { MS } & \mathrm{F} & \mathrm{P} \\\hline \text { REGRESSION } & 1 & 111.008 & 111.008 & 5.19 & 0.0300 \\\text { RESIDUAL } & 34 & 144.656 & 4.25160 & & \\\text { TOTAL } & 35 & 255.665 & & &\end{array}

Give a practical interpretation of the coefficient of determination, r2r ^ { 2 } .


Definitions:

Type I Error

The improper denial of a genuine null hypothesis, also identified as a "false positive."

Randomly Occurring

Events or phenomena that happen without a predictable pattern, order, or reason.

Production Process

A series of steps, operations, or stages designed to produce a product or achieve a specific outcome in a manufacturing or production environment.

Statistical Control

The process of statistically adjusting variables or data to isolate the effect of one variable from others in an analysis.

Related Questions