Examlex

Solved

It Can Be Shown That (1+x)n=1+nx+n(n1)2!x2+n(n1)(n2)3!x3( 1 + x ) ^ { n } = 1 + n x + \frac { n ( n - 1 ) } { 2 ! } x ^ { 2 } + \frac { n ( n - 1 ) ( n - 2 ) } { 3 ! } x ^ { 3 } \ldots

question 159

Multiple Choice

It can be shown that (1+x) n=1+nx+n(n1) 2!x2+n(n1) (n2) 3!x3( 1 + x ) ^ { n } = 1 + n x + \frac { n ( n - 1 ) } { 2 ! } x ^ { 2 } + \frac { n ( n - 1 ) ( n - 2 ) } { 3 ! } x ^ { 3 } \ldots is true for any real number nn (not just positive integer values) and any real number xx , where x<1| x | < 1 . Use this series to approximate the given number to the nearest thousandth.
- (1.03) 5( 1.03 ) ^ { - 5 }


Definitions:

Interdependent Self-Construal

A concept of oneself that is closely linked with and defined by relationships with others, emphasizing connectedness and social context.

Interpersonal Self

The aspect of an individual's self-concept that is formed in relation to their social environments and interactions with others.

Public Self

An aspect of an individual's self-concept that is concerned with how they are seen by others and is shaped by social interactions and public roles.

Interdependent Self-Construal

An understanding of oneself in relation to others and a tendency to define oneself in terms of relationships with others.

Related Questions