Examlex
Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last
variable be the arbitrary variable.
-
Q18: Find the length of each side
Q20: A rocket tracking station has two
Q59: <span class="ql-formula" data-value="\begin{array}{l}\frac{8}{x}-\frac{1}{y}+\frac{3}{z}=-\frac{8}{21} \\-\frac{1}{x}+\frac{5}{y}-\frac{8}{z}=-\frac{8}{3} \\\frac{6}{x}-\frac{1}{y}-\frac{1}{z}=-\frac{2}{3}\end{array}"><span class="katex"><span class="katex-mathml"><math
Q84: <span class="ql-formula" data-value="P ( 0 , -
Q92: <span class="ql-formula" data-value="\left[ \begin{array} { r r
Q94: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB7697/.jpg" alt=" A)
Q121: <span class="ql-formula" data-value="\left[ \begin{array} { r r
Q133: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB7697/.jpg" alt=" A) reciprocal function
Q266: <span class="ql-formula" data-value="c - d"><span class="katex"><span class="katex-mathml"><math
Q437: <span class="ql-formula" data-value="\begin{array} { r } x