Examlex
Use the Gauss-Jordan method to solve the system of equations. If the system has infinitely many solutions, let the last
variable be the arbitrary variable.
-
Q5: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB7697/.jpg" alt=" A)
Q58: <span class="ql-formula" data-value="x=y^{2}"><span class="katex"><span class="katex-mathml"><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>x</mi><mo>=</mo><msup><mi>y</mi><mn>2</mn></msup></mrow><annotation encoding="application/x-tex">x=y^{2}</annotation></semantics></math></span><span
Q59: <span class="ql-formula" data-value="\begin{array}{l}\frac{8}{x}-\frac{1}{y}+\frac{3}{z}=-\frac{8}{21} \\-\frac{1}{x}+\frac{5}{y}-\frac{8}{z}=-\frac{8}{3} \\\frac{6}{x}-\frac{1}{y}-\frac{1}{z}=-\frac{2}{3}\end{array}"><span class="katex"><span class="katex-mathml"><math
Q85: <span class="ql-formula" data-value="f ( x ) =
Q130: <span class="ql-formula" data-value="\begin{array} { l } 2
Q135: Perpendicular to the line -2x - 5y
Q152: Perpendicular to the line <span
Q365: <span class="ql-formula" data-value="\left| \begin{array} { r r
Q408: Find the equation of the line
Q411: <span class="ql-formula" data-value="\left[ \begin{array} { r r