Examlex

Solved

Give a Rule for the Piecewise-Defined Function f(x)={4 if x<04x if x0;f ( x ) = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - 4 x & \text { if } x \geq 0 \end{array} ; \right.

question 9

Multiple Choice

Give a rule for the piecewise-defined function. Then give the domain and range.
- Give a rule for the piecewise-defined function. Then give the domain and range. -  A)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - 4 x & \text { if } x \geq 0 \end{array} ; \right.  Domain:  ( - \infty , 0 )  \cup \{ 4 \} , Range:  ( - \infty , \infty )   B)   f ( x )  = \left\{ \begin{array} { l } 4 \text { if } x < 0 \\ x \text { if } x \geq 0 \end{array} ; \right.  Domain:  ( - \infty , 0 ] \cup ( 4 )  , Range:  ( - \infty , \infty )   C)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x \leq 0 \\ - x & \text { if } x > 0 \end{array} ; \right.  Domain:  ( - \infty , \infty )  , Range:  ( - \infty , 0 )  \cup \{ 4 \}  D)   f ( x )  = \left\{ \begin{array} { l l } 4 & \text { if } x < 0 \\ - x & \text { if } x \geq 0 \end{array} ; \right.  Domain:  ( - \infty , \infty )  , Range:  ( - \infty , 0 ] \cup \{ 4 \}


Definitions:

Related Questions