Examlex

Solved

During Its Manufacture, a Product Is Subjected to Four Different (x1)\left( x _ { 1 } \right)

question 10

Multiple Choice

During its manufacture, a product is subjected to four different tests in sequential order. An efficiency expert claims that the fourth (and last) test is unnecessary since its results can be predicted based on the first three tests. To test this claim, multiple regression will be used to model Test4 score (y) , as a function of Test1 score (x1) \left( x _ { 1 } \right) , Test 2 score (x2) \left( x _ { 2 } \right) , and Test3 score ( x3) \left. x _ { 3 } \right) ) . [Note: All test scores range from 200 to 800 , with higher scores indicative of a higher quality product.] Consider the model:
E(y) =β1+β1x1+β2x2+β3x3E ( y ) = \beta _ { 1 } + \beta _ { 1 } x _ { 1 } + \beta _ { 2 } x _ { 2 } + \beta _ { 3 } x _ { 3 }
The first-order model was fit to the data for each of 12 units sampled from the production line. The results are summarized in the printout.
 SOURCE  DF  SS  MS  F VALUE  PROB > F  MODEL 31514175047218.16.0075 ERROR 8222312779 TOTAL 12173648\begin{array}{lrrrrr}\hline & & & & & \\\text { SOURCE } & \text { DF } & \text { SS } & \text { MS } & \text { F VALUE } & \text { PROB }>\text { F } \\\text { MODEL } & 3 & 151417 & 50472 & 18.16 & .0075 \\\text { ERROR } & 8 & 22231 & 2779 & & \\\text { TOTAL } & 12 & 173648 & & &\end{array}

 ROOT MSE 52.72 R-SQUARE 0.872 DEP MEAN 645.8 ADJ R-SQ 0.824\begin{array}{llll}\text { ROOT MSE } & 52.72 & \text { R-SQUARE } & 0.872 \\\text { DEP MEAN } & 645.8 & \text { ADJ R-SQ } & 0.824\end{array}

 PARAMETER  STANDARD  T FOR 0:  VARIABLE  ESTIMATE  ERROR  PARAMETER =0 PROB >T INTERCEPT 11.9880.500.150.885 X1(TEST1)  0.27450.11112.470.039 X2(TEST2)  0.37620.09863.820.005 X3(TEST3)  0.32650.08084.040.004\begin{array}{lrrrr} & \text { PARAMETER } & \text { STANDARD } & \text { T FOR 0: } & \\\text { VARIABLE } & \text { ESTIMATE } & \text { ERROR } & \text { PARAMETER }=0 & \text { PROB }>|\mathrm{T}| \\\text { INTERCEPT } & 11.98 & 80.50 & 0.15 & 0.885 \\\text { X1(TEST1) } & 0.2745 & 0.1111 & 2.47 & 0.039 \\\text { X2(TEST2) } & 0.3762 & 0.0986 & 3.82 & 0.005 \\\text { X3(TEST3) } & 0.3265 & 0.0808 & 4.04 & 0.004 \\\hline\end{array}

Compute a 95%95 \% confidence interval for β3\beta _ { 3 } .


Definitions:

Normal Distribution

It is a probability distribution that features a symmetric alignment around the mean, emphasizing that data around the mean occur more than data at a distance.

Degrees of Freedom

The count of separate values or amounts that are capable of changing in an analysis while still respecting all limitations.

T-test

A statistical method employed to ascertain whether there's a notable disparity between the averages of two sets.

Interval Data

A type of numerical data that has meaningful intervals between values but no true zero, allowing for the measurement of differences.

Related Questions