Examlex

Solved

Solve the Problem μ= minimum + maximum 2 and σ= range 12\mu = \frac { \text { minimum } + \text { maximum } } { 2 } \text { and } \sigma = \frac { \text { range } } { \sqrt { 12 } }

question 4

Multiple Choice

Solve the problem.
-In a continuous uniform distribution, μ= minimum + maximum 2 and σ= range 12\mu = \frac { \text { minimum } + \text { maximum } } { 2 } \text { and } \sigma = \frac { \text { range } } { \sqrt { 12 } }
Find the mean and standard deviation for a uniform distribution having a minimum of 2- 2 and a maximum of 6


Definitions:

Likelihood

The probability of a particular outcome given a set of parameters within a statistical model.

Binomial Variable

A type of discrete variable that can take one of two independent values, often representing success or failure in an experiment.

Woman

A female human adult.

Sampling Error

The difference between a sample statistic used to estimate a population parameter and the actual but unknown value of the parameter.

Related Questions