Examlex

Solved

Suppose the Variable X Represents Students, Y Represents Courses, and T(x

question 126

Short Answer

suppose the variable x represents students, y represents courses, and T(x, y) means "x is taking y."  Match the English statement with all its equivalent symbolic statements in this list: 1.xyT(x,y)2.yxT(x,y)3.xyT(x,y)4.¬xyT(x,y)5.xy¬T(x,y)6.yxT(x,y)7.yx¬T(x,y)8.¬xyT(x,y)9.¬yxT(x,y)10.¬xy¬T(x,y)11.¬x¬y¬T(x,y)12.xy¬T(x,y)\begin{array}{l}\text { Match the English statement with all its equivalent symbolic statements in this list: }\\\begin{aligned}1 . & \exists x \forall y T ( x , y ) & 2 . & \exists y \forall x T ( x , y ) & 3 . & \forall x \exists y T ( x , y ) \\4 . & \neg \exists x \exists y T ( x , y ) & 5 . & \exists x \forall y \neg T ( x , y ) & 6 . & \forall y \exists x T ( x , y ) \\7 . & \exists y \forall x \neg T ( x , y ) & 8 . & \neg \forall x \exists y T ( x , y ) & 9 . & \neg \exists y \forall x T ( x , y ) \\10 . & \neg \forall x \exists y \neg T ( x , y ) & 11 . & \neg \forall x \neg \forall y \neg T ( x , y ) & 12 . & \forall x \exists y \neg T ( x , y )\end{aligned}\end{array}
-There is a course that no students are taking.


Definitions:

Endorser

A person who signs their name on a document, often a check, to indicate their approval or to transfer ownership to another party.

Drawer

In a financial context, the person who writes or issues a check or draft instructing a bank to pay a specified sum of money to a designated party.

Liable

Legally responsible or obligated.

Promissory Note

A written and legally binding promise to pay a specific sum of money to a designated party at a specified time or on demand.

Related Questions