Examlex

Solved

Use the Binomial Theorem to Prove the Following

question 57

Short Answer

Use the binomial theorem to prove the following: (1000)+(1002)+(1004)+(1006)++(10098)+(100100)=(1001)+(1003)+(1005)++(10097)+(10099)\left( \begin{array} { c } 100 \\0\end{array} \right) + \left( \begin{array} { c } 100 \\2\end{array} \right) + \left( \begin{array} { c } 100 \\4\end{array} \right) + \left( \begin{array} { c } 100 \\6\end{array} \right) + \cdots + \left( \begin{array} { c } 100 \\98\end{array} \right) + \left( \begin{array} { c } 100 \\100\end{array} \right) = \left( \begin{array} { c } 100 \\1\end{array} \right) + \left( \begin{array} { c } 100 \\3\end{array} \right) + \left( \begin{array} { c } 100 \\5\end{array} \right) + \cdots + \left( \begin{array} { c } 100 \\97\end{array} \right) + \left( \begin{array} { c } 100 \\99\end{array} \right)


Definitions:

Universal Instantiation

A logical rule that allows for the deduction of a particular instance of a statement from a universal statement.

Existential Generalization

A logical operation that infers the existence of at least one individual satisfying a certain property from a specific instance.

Quantifier Negation

The process of applying negation to a quantified statement, potentially altering its meaning significantly.

Universal Generalization

A form of logical inference where a general statement is made about all members of a set based on sufficient evidence or instances.

Related Questions