Examlex

Solved

Provide an Appropriate Response 0dxx3+1\int _ { 0 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 }

question 12

Essay

Provide an appropriate response.
-(a) Show that 0dxx3+1\int _ { 0 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 } converges.
(b) Show that 50dxx3+10.0002\int _ { 50 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 } \leq 0.0002 .
(c) Suppose 0dxx3+1\int _ { 0 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 } is approximated by 050dxx3+1\int _ { 0 } ^ { 50 } \frac { d x } { x ^ { 3 } + 1 } . Based on your answer to part (b), what is the maximum possible error?
(d) Use a numerical method to estimate the value of 0dxx3+1\int _ { 0 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 } .
(e) Determine whether 1dxx3+1\int _ { - 1 } ^ { \infty } \frac { d x } { x ^ { 3 } + 1 } converges or diverges, and justify your answer. If it converges, estimate its value to an accuracy of at least two decimal places.


Definitions:

Confidence Interval

A statistical range, derived from sample data, that is likely to contain the true population parameter with a specified level of confidence.

Sample Size

The number of observations or data points collected in a sample.

Variable

An element, feature, or factor that is liable to vary or change.

Confidence Interval

A gamut of values, arising from sample statistic evaluation, with a high likelihood of encompassing the value of a mysterious population parameter.

Related Questions