Examlex

Solved

Provide an Appropriate Response By Solving the Following Initial Value Problem for a Vector

question 104

Essay

Provide an appropriate response.
-Derive the equations
x=x0+v0k(1ekt)cosαy=y0+v0k(1ekt)sinα+gk2(1ktekt)\begin{array} { l } x = x _ { 0 } + \frac { v _ { 0 } } { k } \left( 1 - e ^ { - k t } \right) \cos \alpha \\y = y _ { 0 } + \frac { v _ { 0 } } { k } \left( 1 - e ^ { - k t } \right) \sin \alpha + \frac { g } { k ^ { 2 } } \left( 1 - k t - e ^ { - k t } \right)\end{array}
by solving the following initial value problem for a vector r\mathbf { r } in the plane.
 Differential equation d2rdt2=gjkv=gjkdrdt Initial conditions: r(0)=x0i+y0jdrdt(0)=v0=(v0cosα)i+(v0sinα)j\begin{aligned}\text { Differential equation } \frac { \mathrm { d } ^ { 2 } \mathbf { r } } { \mathrm { dt } ^ { 2 } } & = - g \mathbf { j } - \mathrm { k } \mathbf { v } = - \mathrm { g } \mathbf { j } - \mathrm { k } \frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } \\\text { Initial conditions: } \quad \mathrm { r } ( 0 ) & = \mathrm { x } _ { 0 } \mathbf { i } + \mathrm { y } _ { 0 } \mathbf { j } \\& \frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } ( 0 ) = \mathbf { v } _ { 0 } = \left( \mathrm { v } _ { 0 } \cos \alpha \right) \mathbf { i } + \left( \mathrm { v } _ { 0 } \sin \alpha \right) \mathbf { j }\end{aligned}
The drag coefficient k\mathrm { k } is a positive constant representing resistance due to air density, vo and α\alpha are the projectile's initial speed and launch angle, and gg is the acceleration of gravity.


Definitions:

Purchasing Power

The ability of an entity, such as a person or a firm, to buy goods or services, typically measured by the amount of goods or services that one unit of currency can buy.

Default Probability

The likelihood that a borrower will fail to meet the obligations of debt repayment within the stipulated terms.

Commodities Market

A physical or virtual marketplace for buying, selling, and trading raw or primary products, such as metals, oil, and grains.

Annual Return

The percentage of profit or loss on an investment over a one-year period.

Related Questions