Examlex

Solved

The Following MINITAB Output Presents a Multiple Regression Equatior y^\hat { y }

question 38

Multiple Choice

The following MINITAB output presents a multiple regression equatior y^\hat { y } =b0+b1x1+b2x2+b3x3+b4x4

The regression equation is
Y=2.59191.3391X1+0.6212X2+1.6435X3+1.4269X4\mathrm { Y } = 2.5919 - 1.3391 \mathrm { X } 1 + 0.6212 \mathrm { X } 2 + 1.6435 \mathrm { X } 3 + 1.4269 \mathrm { X } 4

 Predictor  Coef  SE Coef  T  P  Constant 2.59190.62691.16680.337 X1 1.33910.67163.51900.002 X2 0.62120.84883.28480.004 X3 1.64350.79341.88210.090 X4 1.42690.76790.98790.345\begin{array}{lllll}\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\text { Constant } & 2.5919 & 0.6269 & 1.1668 & 0.337 \\\text { X1 } & -1.3391 & 0.6716 & 3.5190 & 0.002 \\\text { X2 } & 0.6212 & 0.8488 & -3.2848 & 0.004 \\\text { X3 } & 1.6435 & 0.7934 & 1.8821 & 0.090 \\\text { X4 } & 1.4269 & 0.7679 & -0.9879 & 0.345\end{array}

 The following MINITAB output presents a multiple regression equatior  \hat { y } =b<sub>0</sub>+b<sub>1</sub>x<sub>1</sub>+b<sub>2</sub>x<sub>2</sub>+b<sub>3</sub>x<sub>3</sub>+b<sub>4</sub>x<sub>4</sub>  The regression equation is  \mathrm { Y } = 2.5919 - 1.3391 \mathrm { X } 1 + 0.6212 \mathrm { X } 2 + 1.6435 \mathrm { X } 3 + 1.4269 \mathrm { X } 4    \begin{array}{lllll} \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 2.5919 & 0.6269 & 1.1668 & 0.337 \\ \text { X1 } & -1.3391 & 0.6716 & 3.5190 & 0.002 \\ \text { X2 } & 0.6212 & 0.8488 & -3.2848 & 0.004 \\ \text { X3 } & 1.6435 & 0.7934 & 1.8821 & 0.090 \\ \text { X4 } & 1.4269 & 0.7679 & -0.9879 & 0.345 \end{array}        \text { Analysis of Variance }   \begin{array}{lccccc} \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 4 & 735.9 & 184.0 & 7.7311 & 0.003 \\ \text { Residual Error } & 25 & 594.6 & 23.8 & & \\ \text { Total } & 29 & 1,330.5 & & & \\ \hline \end{array}  Let  \beta _ { 3 }  be the coefficient  X _ { 3 }  Test the hypothesis  H _ { 0 } : \beta _ { 3 } = 0   versus  H _ { 1 } : \beta _ { 3 } \neq 0 \text { at the } \alpha = 0.05  level. What do you conclude? A)  Reject H<sub>0</sub> B)  Do not reject H<sub>0</sub>


 Analysis of Variance \text { Analysis of Variance }
 Source  DF  SS  MS  F  P  Regression 4735.9184.07.73110.003 Residual Error 25594.623.8 Total 291,330.5\begin{array}{lccccc}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\text { Regression } & 4 & 735.9 & 184.0 & 7.7311 & 0.003 \\\text { Residual Error } & 25 & 594.6 & 23.8 & & \\\text { Total } & 29 & 1,330.5 & & & \\\hline\end{array}
Let β3\beta _ { 3 } be the coefficient X3X _ { 3 } Test the hypothesis H0:β3=0H _ { 0 } : \beta _ { 3 } = 0 versus H1:β30 at the α=0.05H _ { 1 } : \beta _ { 3 } \neq 0 \text { at the } \alpha = 0.05 level. What do you conclude?


Definitions:

Gross Profit Margin

A financial metric that represents the percentage of revenue that exceeds the cost of goods sold, indicating the efficiency of production.

Cost Of Goods Sold

Expenses directly associated with the creation of a company's sold products, including both materials and workforce costs.

Sales

Sales represent the total revenue earned from goods or services sold by a company during a certain period.

Gross Profit Margin

A financial ratio that indicates the percentage of revenue that exceeds the cost of goods sold, highlighting the efficiency in producing and selling products.

Related Questions