Examlex

Solved

The Following MINITAB Output Presents a Multiple Regression Equatior y^\hat { y }

question 19

Multiple Choice

The following MINITAB output presents a multiple regression equatior y^\hat { y } =b0+b1x1+b2x2+b3x3+b4x4
The regression equation is
Y=5.5079+1.6552X11.1088X2+1.3981X31.2465X4\mathrm { Y } = 5.5079 + 1.6552 \mathrm { X } 1 - 1.1088 \mathrm { X } 2 + 1.3981 \mathrm { X } 3 - 1.2465 \mathrm { X } 4

 Predictor  Coef  SE Coef  T  P  Constant 5.50790.76401.10020.314 X1 1.65520.70323.19290.002 X2 1.10880.60233.23100.005 X3 1.39810.89701.81370.087 X4 1.24650.82511.14330.354\begin{array}{lllll}\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\text { Constant } & 5.5079 & 0.7640 & 1.1002 & 0.314 \\\text { X1 } & 1.6552 & 0.7032 & 3.1929 & 0.002 \\\text { X2 } & -1.1088 & 0.6023 & -3.2310 & 0.005 \\\text { X3 } & 1.3981 & 0.8970 & 1.8137 & 0.087 \\\text { X4 } & -1.2465 & 0.8251 & -1.1433 & 0.354\end{array}

 The following MINITAB output presents a multiple regression equatior  \hat { y } =b<sub>0</sub>+b<sub>1</sub>x<sub>1</sub>+b<sub>2</sub>x<sub>2</sub>+b<sub>3</sub>x<sub>3</sub>+b<sub>4</sub>x<sub>4</sub> The regression equation is  \mathrm { Y } = 5.5079 + 1.6552 \mathrm { X } 1 - 1.1088 \mathrm { X } 2 + 1.3981 \mathrm { X } 3 - 1.2465 \mathrm { X } 4    \begin{array}{lllll} \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 5.5079 & 0.7640 & 1.1002 & 0.314 \\ \text { X1 } & 1.6552 & 0.7032 & 3.1929 & 0.002 \\ \text { X2 } & -1.1088 & 0.6023 & -3.2310 & 0.005 \\ \text { X3 } & 1.3981 & 0.8970 & 1.8137 & 0.087 \\ \text { X4 } & -1.2465 & 0.8251 & -1.1433 & 0.354 \end{array}       \text { Analysis of Variance }   \begin{array}{lccccc} \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 4 & 637.5 & 159.4 & 7.1480 & 0.003 \\ \text { Residual Error } & 40 & 893.2 & 22.3 & & \\ \text { Total } & 44 & 1,530.7 & & & \end{array}   Let  \beta _ { 1 }  be the coefficient  X _ { 1 }  Test the hypothesis  H _ { 0 } : \beta _ { 1 } = 0  rersus  H _ { 1 } : \beta _ { 1 } \neq 0 \text { at the } \alpha = 0.05  level. What do you conclude? A)  Do not H<sub>0</sub> B)  Reject H<sub>0</sub>

 Analysis of Variance \text { Analysis of Variance }
 Source  DF  SS  MS  F  P  Regression 4637.5159.47.14800.003 Residual Error 40893.222.3 Total 441,530.7\begin{array}{lccccc}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\text { Regression } & 4 & 637.5 & 159.4 & 7.1480 & 0.003 \\\text { Residual Error } & 40 & 893.2 & 22.3 & & \\\text { Total } & 44 & 1,530.7 & & &\end{array}

Let β1\beta _ { 1 } be the coefficient X1X _ { 1 } Test the hypothesis H0:β1=0H _ { 0 } : \beta _ { 1 } = 0 rersus H1:β10 at the α=0.05H _ { 1 } : \beta _ { 1 } \neq 0 \text { at the } \alpha = 0.05
level. What do you conclude?

Realize the impact of promotion methods, including public service announcements, in services marketing.
Understand the process of internal marketing and its necessity before targeting customers.
Understand the purpose and scope of consumer protection legislation.
Recognize the historical background and evolution of consumer protection laws.

Definitions:

Product Placement

The practice of intentionally placing products in movies, shows, or other media content for promotional purposes.

Promotional Deal

An offer designed to stimulate purchases through special discounts, coupons, or other incentives.

Mass Media Buy

The purchase of advertising space or time on widely distributed media platforms to reach a large audience.

Loyalty Program

A rewards program offered by a company to customers who frequently make purchases, encouraging continued business by offering benefits or perks.

Related Questions