Examlex

Solved

The Following MINITAB Output Presents a Multiple Regression Equation y=b0+b1x1+b2x2+b3x3y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 }

question 43

True/False

The following MINITAB output presents a multiple regression equation y=b0+b1x1+b2x2+b3x3y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 } +b4x4+ b _ { 4 } x _ { 4 } .
The regression equation is
Y=3.9695+1.4577X11.7859X2+0.7686X3+0.0777X4\mathrm { Y } = 3.9695 + 1.4577 \mathrm { X } 1 - 1.7859 \mathrm { X } 2 + 0.7686 \mathrm { X } 3 + 0.0777 \mathrm { X } 4
 Predictor  Coef  SE Coef  T  P  Constant 3.96950.87850.92990.327 X1 1.45770.60343.51070.003 X2 1.78590.73023.11480.005 X3 0.76860.67321.92940.088 X4 0.07770.75691.07820.352\begin{array}{lllll}\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\\text { Constant } & 3.9695 & 0.8785 & 0.9299 & 0.327 \\\text { X1 } & 1.4577 & 0.6034 & 3.5107 & 0.003 \\\text { X2 } & -1.7859 & 0.7302 & -3.1148 & 0.005 \\\text { X3 } & 0.7686 & 0.6732 & 1.9294 & 0.088 \\\text { X4 } & 0.0777 & 0.7569 & -1.0782 & 0.352\end{array}
 The following MINITAB output presents a multiple regression equation  y = b _ { 0 } + b _ { 1 } x _ { 1 } + b _ { 2 } x _ { 2 } + b _ { 3 } x _ { 3 }   + b _ { 4 } x _ { 4 } . The regression equation is  \mathrm { Y } = 3.9695 + 1.4577 \mathrm { X } 1 - 1.7859 \mathrm { X } 2 + 0.7686 \mathrm { X } 3 + 0.0777 \mathrm { X } 4   \begin{array}{lllll} \text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\ \text { Constant } & 3.9695 & 0.8785 & 0.9299 & 0.327 \\ \text { X1 } & 1.4577 & 0.6034 & 3.5107 & 0.003 \\ \text { X2 } & -1.7859 & 0.7302 & -3.1148 & 0.005 \\ \text { X3 } & 0.7686 & 0.6732 & 1.9294 & 0.088 \\ \text { X4 } & 0.0777 & 0.7569 & -1.0782 & 0.352 \end{array}        \text { Analysis of Variance }   \begin{array}{lccccc} \text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\ \text { Regression } & 4 & 1,148.7 & 287.2 & 9.0031 & 0.003 \\ \text { Residual Error } & 34 & 1,083.9 & 31.9 & & \\ \text { Total } & 38 & 2,232.6 & & & \\ \hline \end{array}   Is the model useful for prediction? Use the  = 0.05 level.



 Analysis of Variance \text { Analysis of Variance }
 Source  DF  SS  MS  F  P  Regression 41,148.7287.29.00310.003 Residual Error 341,083.931.9 Total 382,232.6\begin{array}{lccccc}\text { Source } & \text { DF } & \text { SS } & \text { MS } & \text { F } & \text { P } \\\text { Regression } & 4 & 1,148.7 & 287.2 & 9.0031 & 0.003 \\\text { Residual Error } & 34 & 1,083.9 & 31.9 & & \\\text { Total } & 38 & 2,232.6 & & & \\\hline\end{array}
Is the model useful for prediction? Use the  = 0.05 level.


Definitions:

Socioeconomic Status

A measure of an individual's or family's economic and social position relative to others, based on income, education, and occupation.

PTSD

Posttraumatic Stress Disorder, a mental health condition triggered by experiencing or witnessing a terrifying event, characterized by flashbacks, nightmares, and severe anxiety.

9/11

The date, September 11, 2001, when terrorist attacks occurred in the United States, targeting the World Trade Center in New York City and the Pentagon.

Occupational Segregation

The division of labor by gender, ethnicity, or other characteristics, leading to different groups being channelled into different types of jobs.

Related Questions