Examlex

Solved

Solve the Problem β1\beta _ { 1 } For a Regression Line

question 146

Multiple Choice

Solve the problem.
-A confidence interval for the slope β1\beta _ { 1 } for a regression line y=β0+β1xy = \beta _ { 0 } + \beta _ { 1 } x can be found by evaluating the limits in the interval below:
b1E<β1<b1+Eb _ { 1 } - E < \beta _ { 1 } < b _ { 1 } + E
where E=(tα/2) sex2(x) 2/n\mathrm { E } = \frac { \left( \mathrm { t } _ { \alpha / 2 } \right) \mathrm { s } _ { \mathrm { e } } } { \sqrt { \sum ^ { \mathrm { x } ^ { 2 } - \left( \sum ^ { \mathrm { x } } \right) ^ { 2 } / \mathrm { n } } } } The critical value tα/2\mathrm { t } _ { \alpha / 2 } is found from the t\mathrm { t } -table using n2\mathrm { n } - 2 degrees of freedom and b1\mathrm { b } _ { 1 } is calculated in the usual way from the sample data.
Use the data below to obtain a 95%95 \% confidence interval estimate of β1\beta 1 .
x (hours studied)  2.54.55.17.911.6y (score on test)  6670608393\begin{array}{l|ccccc}x \text { (hours studied) } & 2.5 & 4.5 & 5.1 & 7.9 & 11.6 \\\hline y \text { (score on test) } & 66 & 70 & 60 & 83 & 93\end{array}


Definitions:

Related Questions