Examlex

Solved

Verify the Divergence Theorem by Evaluating SFNds\iint _ { S } \mathbf { F } \cdot \mathbf { N } d s

question 62

Multiple Choice

 Let F(x,y,z) =2xi^2yj^+z2k^ and let S be the cylinder x2+y2=4,0z3\text { Let } F ( x , y , z ) = 2 x \hat { \mathbf { i } } - 2 y \hat { \mathbf { j } } + z ^ { 2 } \hat { \mathbf { k } } \text { and let } S \text { be the cylinder } x ^ { 2 } + y ^ { 2 } = 4,0 \leq z \leq 3 \text {. } Verify the Divergence Theorem by evaluating SFNds\iint _ { S } \mathbf { F } \cdot \mathbf { N } d s as a surface integral and as a triple integral.
\text { Let } F ( x , y , z )  = 2 x \hat { \mathbf { i } } - 2 y \hat { \mathbf { j } } + z ^ { 2 } \hat { \mathbf { k } } \text { and let } S \text { be the cylinder } x ^ { 2 } + y ^ { 2 } = 4,0 \leq z \leq 3 \text {. }   Verify the Divergence Theorem by evaluating  \iint _ { S } \mathbf { F } \cdot \mathbf { N } d s  as a surface integral and as a triple integral.    A)   18 \pi  B)   36 \pi  C)   12 \pi  D)   108 \pi  E)   54 \pi


Definitions:

Related Questions