Examlex

Solved

Find the Particular Solution of the Differential Equation wgytt(t)+byt(t)+ky(t)=wgF(t)\frac { w } { g } y ^ { tt } ( t ) + b y ^ { t } ( t ) + k y ( t ) = \frac { w } { g } F ( t )

question 28

Multiple Choice

Find the particular solution of the differential equation wgytt(t) +byt(t) +ky(t) =wgF(t) \frac { w } { g } y ^ { tt } ( t ) + b y ^ { t } ( t ) + k y ( t ) = \frac { w } { g } F ( t ) for the oscillating motion of an object on the end of a spring. In the equation, yy is the displacement from equilibrium (positive direction is downward) measured in feet, and tt is the time in seconds (see figure) . The constant w=4w = 4 is the weight of the object, g=32g = 32 is the acceleration due to gravity, b=12b = \frac { 1 } { 2 } is the magnitude of the resistance to the motion, k=252k = \frac { 25 } { 2 } is the spring constant from Hooke's Law, F(t) =4sin8tF ( t ) = 4 \sin 8 t is the acceleration imposed on the system, y(0) =15y ( 0 ) = \frac { 1 } { 5 } and yt(0) =6y ^ { t } ( 0 ) = - 6
 Find the particular solution of the differential equation  \frac { w } { g } y ^ { tt } ( t )  + b y ^ { t } ( t )  + k y ( t )  = \frac { w } { g } F ( t )   for the oscillating motion of an object on the end of a spring. In the equation,  y  is the displacement from equilibrium (positive direction is downward)  measured in feet, and  t  is the time in seconds (see figure) . The constant  w = 4  is the weight of the object,  g = 32  is the acceleration due to gravity,  b = \frac { 1 } { 2 }  is the magnitude of the resistance to the motion,  k = \frac { 25 } { 2 }  is the spring constant from Hooke's Law,  F ( t )  = 4 \sin 8 t  is the acceleration imposed on the system,  y ( 0 )  = \frac { 1 } { 5 }  and  y ^ { t } ( 0 )  = - 6    A)   y = \frac { 37 } { 145 } e ^ { - 2 t } \cos ( 4 \sqrt { 6 } t )  + \frac { 217 \sqrt { 6 } } { 870 } e ^ { - 2 t } \sin ( 4 \sqrt { 6 } t )  + \frac { 9 } { 145 } \sin 8 t - \frac { 8 } { 145 } \cos 8 t  B)   y = \frac { 1 } { 5 } e ^ { 2 t } \sin ( 3 \sqrt { 6 } t )  + \frac { 7 \sqrt { 6 } } { 30 } e ^ { 2 t } \cos ( 3 \sqrt { 6 } t )  + \frac { 7 } { 145 } \sin 8 t + \frac { 8 } { 145 } \cos 8 t  C)   y = \frac { 37 } { 145 } e ^ { - 2 t } \sin ( 2 \sqrt { 5 } t )  + \frac { 7 \sqrt { 3 } } { 30 } e ^ { - 2 t } \cos ( 2 \sqrt { 5 } t )  - \frac { 9 } { 145 } \sin 8 t - \frac { 7 } { 145 } \cos 8 t  D)   y = \frac { 1 } { 5 } e ^ { - 2 t } \cos ( 8 \sqrt { 2 } t )  - \frac { 217 \sqrt { 6 } } { 870 } e ^ { - 2 t } \sin ( 8 \sqrt { 2 } t )  + \frac { 8 } { 145 } \sin 8 t - \frac { 9 } { 145 } \cos 8 t  E)  y = \frac { 1 } { 5 } e ^ { 2 t } \cos ( 7 \sqrt { 3 } t )  - \frac { 7 \sqrt { 3 } } { 30 } e ^ { 2 t } \sin ( 7 \sqrt { 3 } t )  + \frac { 9 } { 145 } \sin 8 t - \frac { 7 } { 145 } \cos 8 t


Definitions:

Methyl Isobutyrate

An organic compound with the formula C5H10O2, used as a flavoring agent and solvent.

Acid Chloride

Organic compounds belonging to the acyl chloride group, characterized by a carbon-oxygen double bond connected to a chlorine atom, used as intermediates in organic synthesis.

2° Amine

A type of amine where the nitrogen atom is attached to two alkyl or aryl groups and one hydrogen atom.

Compound

A compound is a substance formed when two or more chemical elements are chemically bonded together.

Related Questions